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The Convex Hull is one of the most relevant structures in computational geometry, with many applications such 
as in computer graphics, robotics, and data mining. Despite the advances in the new algorithms in this area, it is 
often needed to improve the performance to solve more significant problems quickly or in real-time processing. 
This work presents an experimental evaluation of GPU filters to reduce the cost of computing the 2D convex hull. 
The techniques first perform a preprocessing of the input set, filtering all points within an eight-vertex polygon to 
obtain a reduced set of candidate points. We use parallel computation and the use of the Manhattan distance as a 
metric to find the vertices of the polygon and perform the point filtering. For the filtering stage we study different 
approaches; from custom CUDA kernels to libraries such as Thrust and Cub. Four types of point distributions are 
tested: a normal distribution (favorable case), uniform (favorable case), circumference (the worst case), and a 
case where points are shifted randomly from the circumference (intermediate case). The experimental evaluation 
shows that the GPU filtering algorithm can be up to 17.5× faster than a sequential CPU implementation, and the 
whole convex hull computation can be up to 160× faster than the fastest implementation provided by the CGAL

library for a uniform distribution and 23× for a normal distribution.
1. Introduction

The 2D convex hull is a geometric concept represented by the small-

est convex polygon that encloses a given set of points in the plane [1]. 
Informally, it is the shape formed by connecting all the points on the 
outermost boundary of a set of points. The study of convex hulls has a 
rich history, with many different algorithms and techniques being de-

veloped over the years to improve the efficiency and accuracy of convex 
hull computations [2].

Convex hulls have a wide range of applications in various fields of 
science and technology. Some examples include:

• Computer graphics: convex hulls are used to compute the convex 
bounding polygons of shapes for accelerating geometric operations 
over them and for constructing other structures like Delaunay tri-
angulations and Voronoi diagrams [1,3], among others.

• Collisions: Robotics use convex hulls to compute a robot’s reach-

able space, which is the set of points that the robot can move to 
without colliding with obstacles [4,5].

• Data mining: It uses convex hulls to cluster a set of points into 
groups based on their spatial relationship. That is useful for discov-

ering patterns or trends in large datasets [6].

* Corresponding author.

Overall, convex hull algorithms have been applied to a wide range 
of applications in many different fields, making them valuable tools 
for solving a variety of problems. Several strategies have been imple-

mented to compute the convex hull of an input point set and have been 
improved significantly over the years, such as the Gift wrapping [7,8]

in 𝑂(𝑛ℎ) time (where 𝑛 is the number of input points, and ℎ is the 
number of points in the hull), the Graham scan [9] in 𝑂(𝑛 log𝑛), the 
QuickHull [10] in 𝑂(𝑛2) in the worse case and 𝑂(𝑛 log𝑛) in average, 
the divide-and-conquer algorithm [11] and the incremental approach 
[12] in 𝑂(𝑛 log𝑛), among others. In addition, new algorithms have been 
developed that can handle special cases, such as computing the con-

vex hull of points on the surface of a sphere or in higher-dimensional 
spaces.

The state-of-the-art in convex hull computation continues to evolve 
and improve, offering increasingly efficient and accurate solutions to 
a wide range of problems. Two of the most efficient and open source 
implementations of the convex hull are provided by Qhull [10], and 
theCGAL [13] library. CGAL implements several of the algorithms, such 
as, [14–18]. Both Qhull and CGAL libraries have been optimized for 
a sequential computation scheme. In the same direction, Ferrada et 
al. [19], recently developed an improved version of the convex hull 
algorithm discarding all points inside of an eight-sided polygon and 
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using the Manhattan distance as the primary metric. The authors re-

ported a speedup of 1.7× to 10× faster than the convex hull methods 
available in theCGAL library. In the latest years, many applications in 
computational geometry have moved from sequential single-core CPU 
computation to parallel computation [20] in order to tackle larger prob-

lems without incurring long execution times. One of the most common 
transitions has been moving from CPU to GPU-based computation. Both

Qhull and CGAL are considered by the research community the stan-

dard reference to compare and present the performance of new algo-

rithms and so we are going to do this in this work.

The most widely-used and efficient strategy for accelerating the 
computation of the convex hull consists of eliminating interior points 
not candidates to the hull and considering only the remaining points 
to compute the hull. The elimination of interior points is done as a pre-

processing step and it is known as the filtering process. Although several 
GPU-based filters have been implemented, there are still open questions 
such as how effective are GPU libraries such as Thrust/Cub compared 
to GPU solutions built from the ground, or what additional improve-

ment can GPU tensor cores give to the filtering stage, among others. 
The goal of this work is to study and evaluate different programming 
methods available in modern GPUs that incorporate new cores and data 
management libraries to optimize efficiency in the context of improv-

ing the performance and scalability of the filtering process and finally 
of the convex hull algorithms. To fulfill our goal, we parallelize Fer-

rada et al.’s filtering process in four different variations and subject to 
a thorough performance evaluation to determine the impact of these 
cutting-edge techniques and technologies. We run several experiments 
and show the experimental results of the four implemented variants. 
We compare these GPU filtering variants with multi-core and sequen-

tial filtering using both the Manhattan and Euclidean metrics, and the 
computation of the convex hull againstCGAL and a GPU state-of-the-art 
method.

The main contributions of this work are summarized as the follow-

ing:

• The parallelization of Ferrada et al.’s filtering process in four vari-

ants: 1) the implementation uses just the programming function-

alities provided by CUDA, 2) and 3) the implementations use the 
functions provided by the Thrust library and 4) the implementation 
uses the Cub library.

• The impact of using the Manhattan distance as a metric to de-

termine the initial polygon and the impact of using the Thrust 
and Cub libraries for point filtering versus implementing the filter-

ing process from scratch using the latest GPU programming model 
[21–23].

• The fastest proposed variant is the thrust-copy implementation, 
however the most scalable is the CUDA-based implementation 
which supports a large number of point sets.

• The GPU implementation from scratch improves the scalability 
with respect to the other variants because it is capable of handling 
larger datasets than those supported by current state-of-the-art li-
braries.

The rest of the manuscript is organized as follows; related work is 
covered in Section 2. The problem statement and main contribution 
are presented in Section 3, and different implementation variants of 
the algorithm are described in Section 4. The distributions of points 
under study are described in Section 5. An in-depth experimental per-

formance comparison against a faster implementation available in CGAL
is presented in Section 6. Finally, a discussion of the results as well as 
conclusions are given in Section 7.

2. Related works

As we mentioned in the previous section, the most widely used and 
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efficient method for improving the computational performance of a con-
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vex hull algorithm consists of eliminating interior points that are not 
candidates for the hull, this way reducing the input size of the problem. 
To our knowledge, QuickHull was one of the first algorithms using this 
approach. A polygon built from four extreme points was used to discard 
the points inside this polygon, before computing the hull with just the 
remaining points.

Several authors have extended this approach by building a larger 
polygon, for example with eight or sixteen points, so that more inte-

rior points can be eliminated. Mei et al. propose an iterative filtering 
technique in sequential CPU to further improve the computation of the 
convex hull [24]. Later, Mei et al. proposed a parallel approach using 
the GPU that consisted of first identifying 16 points on the convex hull 
through rotation of all points at three different angles and then discard-

ing all points in parallel inside the polygon formed by these identified 
points [25].

Qin et al. proposed a GPU solution based on Mei’s filter that uti-

lizes a preprocessing approach to classify all points and discard those 
that do not belong to the convex hull in GPU and then they distribute 
the remaining points into four sub-regions. For each subset of points, 
they sort them in parallel, then perform a second round of discarding 
using a sorting-based preprocessing approach, so they finally form a 
simple chain for the remaining points [26]. This preprocessing step re-

sulted in a speedup of up to 6× over a Qhull implementation. Mei et 
al. have also extended the algorithm to compute the convex hull in a 
3D set of points [27]. In the last years, Mei et al. [28] proposed a new 
algorithm implemented using the Thrust library in GPU for the filtering 
process, which consisted of two preprocessing phases. In the first phase, 
all points located within a polygon defined by the extreme points are 
eliminated. Then, using the filtered points excluding the previous ex-

treme points, they determine the new extreme points and proceed with 
a second filtering phase. Finally, they used a sequential CPU algorithm 
to compute the convex hull with [29]. This implementation represents 
one of the fastest algorithms available on the web that leverages the 
capabilities of modern GPUs, making it a state-of-the-art solution.

Among other recent works in preprocessing technique for comput-

ing the convex hull is the work of Alshamrani et al. [30], who proposed 
a filtering technique that uses the Euclidean distance to find the ex-

treme points by filtering all the points within a polygon of four vertices, 
achieving an acceleration of up to 77× and 12× faster than the Graham 
scan and Jarvis march algorithms, respectively. The other important 
recent work is the proposal by Ferrada et al. [19], who developed a 
sequential approach, named heaphull, for discarding points in 2D 
convex hulls using the Manhattan distance as the primary metric. This 
method discards all points outside a polygon formed by eight vertices 
in 𝑂(𝑛), resulting in a reduced set of candidate points. They reported 
a speedup of 1.7× to 10× faster than convex hull methods available in 
the CGAL library. Based on this work, Alan et al. [31] developed a GPU 
implementation that runs 4× faster than the sequential CPU-based al-

gorithm (heaphull) and 3 ∼ 4× faster than other existing GPU-based 
approaches in state-of-the-art. From a different perspective, Barbay and 
Ochoa propose a different approach using an adaptive algorithm for 
merging 𝑘 convex hulls on the plane [32]. The algorithm begins by 
decomposing the input sequence of points into several parts and calcu-

lating the convex hull for each part, both steps can be done in linear 
time. They then use a novel and fast merge technique to join all the 
partial hulls. These works demonstrate the potential of using GPU to 
accelerate convex hull algorithms.

Previous attempts to speed up the computation of convex hulls have 
employed parallel algorithms to implement some operations of the tra-

ditional algorithms, such as calculating the distance between points or 
determining extreme points, among others, or using parallel preprocess-

ing techniques to select candidate points. Srungarapu et al. proposed a 
parallel GPU-based QuickHull algorithm to accelerate the computation 
of 2D convex hulls [33], they offer a QuickHull-based algorithm that 
parallelized the determination of the extreme points, marking the points 

inside of the polygon and scanning but the main loop of the QuickHull 
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is in CPU. They reported a speedup of up to 14× over a traditional CPU-

based convex hull solution. Stein et al. developed a parallel algorithm 
for computing the 3D convex hull of a set of points using the CUDA pro-

gramming model [34]. This approach, based on the QuickHull method, 
achieved 30× of speedup over a CPU-based Qhull implementation.

Another approach is the one developed by Blelloch et al. where they 
present a theoretical analysis on a parallel incremental random algo-

rithm [35] to compute the 2D convex hull that, for a set of 𝑛 points 
in any constant dimension, has 𝑂(log𝑛) depth dependency with high 
probability. This leads to a simple and optimal parallel algorithm for 
working with a polylogarithmic stretch.

Many of these recently developed CPU-based works have the po-

tential to be implemented using the GPU programming model. For 
instance, Ferrada et al. [19] demonstrated that significant performance 
improvements can be achieved by harnessing the parallel processing 
capabilities of GPUs. This provides an opportunity to enhance current 
filtering methods by incorporating the GPU programming model and 
low-cost geometric operations.

We have also observed that some state-of-the-art works do not 
present a common experimental framework and do not have their 
source code available. Therefore, we aim to propose a benchmarking 
standard that analyzes the main case studies and metrics to be consid-

ered.

3. Algorithm for computing the convex hull using the GPU

In this section, we describe our approach to parallelize the filtering 
technique developed by Ferrada et al. [19], now on GPU. In that work, 
the Manhattan distance was used as the primary metric for calculating 
extreme points. Our proposed parallel algorithm consists of three stages. 
The first stage, outlined in Section 3.1, involves constructing in paral-

lel an octagon polygon with extreme points from the input. The second 
stage, described in Section 3.2, discards in parallel the points not can-

didates for the hull. The final stage, outlined in Section 3.3, calculates 
the convex hull using an existing state-of-the-art sequential algorithm. 
Finally, we show the complexity of the algorithm.

3.1. Finding the eight-side polygon

The first stage of the algorithm involves constructing an eight-sided 
polygon from the 𝑛 input points, which is then used to filter the non-

candidate points and retain the remaining 𝑛′ ≤ 𝑛 points as convex hull 
candidates. Fig. 1 illustrates the eight-sided polygon for a small point 
set. The polygon is formed by the four extreme points shown as red 
points (the right-most, the upper-most, the left-most, and the lowest-

most) and the four points (C1-4) shown in green that, according to 
the Manhattan distance, are closest to the corners (Corner 1-4) of the 
bounding box defined by the four extreme points. The extreme points 
are obtained using parallel min-max reduction in each axis in loga-

rithmic time. Meanwhile, each one of the four corner points (C1-4) 
corresponds to the point with the lowest Manhattan distance to one cor-

ner of the bounding box. For example, point C1 is the top-right corner 
because the sum of the absolute difference of the 𝑥 and 𝑦 coordinates 
from any input point to Corner 1 gets the lowest value with C1. The 
identification of the points C1-4 is also done in logarithmic time using 
parallel reduction to compute the minimum Manhattan distance. The 
algorithm takes 𝑂(log𝑛) time to find the eight points and to build the 
eight-sided polygon.

It is worth mentioning that the distance metric can be easily changed 
to the Euclidean distance, for example, and the algorithm to com-

pute points C1-4 will continue to be logarithmic. The Manhattan dis-

tance [36] is a simple and inexpensive computation that only requires 
addition and subtraction, whereas the Euclidean distance requires prod-

ucts and computationally expensive operations such as square roots 
3

[37]. Fig. 2 shows the time spent to find all axis extreme points of a 
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Fig. 1. The illustration depicts the eight-sided polygon formed by the four ex-

treme points (red points) and four additional points C1-4 (green points)resulting 
from the first stage of the algorithm applied to a point cloud. Points colored in 
black are considered candidates for the hull, while those colored in gray are 
discarded in the filtering stage.

Fig. 2. Performance of finding extreme points between Manhattan and Eu-

clidean in logarithmic time.

circumference (including the corners). It can be seen that the computa-

tion time used to calculate the Manhattan distance is less than the time 
to calculate the Euclidean distance in sequential CPU cases, however, 
in parallel GPUs and CPUs this difference can be seen to be less.

3.2. Extracting candidate points

The selection of the 𝑛′ candidates points from a set of 𝑛 points cannot 
be done in just one data parallel task but in two. The first one labels 
each one of the 𝑛 points as a candidate or not and the second one stores 
only the 𝑛′ points to be passed to the next stage.

For the labeling, each point is processed by a separate thread. Each 
thread checks if the point lies inside or not of the eight-sided polygon 
built in the previous stage. If the point is inside the polygon, it is labeled 
as a non-candidate point and if it is outside the polygon is labeled as a 
candidate point. This labeling process can be observed in Fig. 1 where 
the black points are considered as candidates for the hull, and the gray 
points are discarded. The result of the application of the previous kernel 

to 𝑛 input points can be stored as a vector of 𝑛 bits, where each bit set 
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to 1 represents a candidate point for the hull, and a bit set to 0 indicates 
that the point does not belong to the hull.

For extracting the 𝑛′ labeled points from an array of 𝑛 points and 
storing them in an array of size 𝑛′, a compact operation must be done. 
However, it is not possible to compact all the elements of a sparse array 
simultaneously in a single parallel kernel call, since the position of each 
element of the original array in the compacted array is not known in 
advance. Nevertheless, there are techniques to compact sparse arrays 
in logarithmic time [38]. The most common way to compact a sparse 
bit array to another non-sparse array of a smaller size is to use the 
parallel scan or atomic functions, this work uses a custom compaction 
developed for us, based on the tensor cores scan developed by Dakkak 
et al. [21] adapted to work with integer arrays.

3.3. Computing the convex hull from the candidate points

As a result of the previous stage, we have a set of 𝑛′ candidate points 
from the initial input point set (red, green, and black points in Fig. 1. 
The gray points were discarded in the previous stage. The algorithm can 
be connected to any existing convex hull implementation available in 
the state-of-the-art. In this work, we use an efficient CPU implementa-

tion provided by CGAL for all experiments, which is described in more 
detail in Section 6.

3.4. Complexity of the filtering process

The complexity of the filtering algorithm is determined by the sum 
of the computational order of the operations carried out in the first 
two phases. The first phase involves the construction of the eight-sided 
polygon which is done in logarithmic time in parallel. The cost of the 
second phase, which corresponds to the extraction of the point candi-

dates, is logarithmic. This phase consists of two subphases. The first 
subphase determines if a point is a candidate or not, which is done in 
one kernel call per point. The second subphase, corresponding to the 
compaction of the array has a logarithmic cost. Consequently, the sum 
of both phases gives an 𝑂(log𝑛) cost, while their CPU counterparts offer 
only linear-time solutions.

4. Filtering process implementations

In this section, we describe our four approaches to implement the 
filtering process proposed in the previous section. Each approach al-

lows us to evaluate the impact of different programming techniques, 
specific cores, or library functions, among others, to solve the same 
problem. In particular, one implementation uses only lower-level pro-

gramming kernels provided by CUDA in the C language. The other three 
implementations benefit from Thrust [39] or Cub [40], two higher-level 
application programming interfaces (APIs) provided by CUDA. In par-

ticular, Thrust provides strong support for lambda functions, and Cub 
provides a fast software component for processing data on the GPU. The 
code for these implementations is available at https://github.com/rcar-

rascoc/GPU-2D-Convex_Hull_Filter.1

The filtering process is implemented as specified in Algorithm 1. 
We have defined three functions, each one implementing one step. The 
first function findingPolygon corresponds to the Finding the Eight-

side Polygon phase. Its input is a set of points, and its output the points 
of the eight-side polygon. The second function is labelingPoints
which takes as input the eight-side polygon and marks which points 
are candidates to the hull. The third function is the compactingFil-
teredPoints which extracts the candidate points from the point array 
to return as output an array with only the hull candidate points. Finally, 
the convex hull is computed using any algorithm available on the state-

of-the-art with the output of the previous function.
4
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Algorithm 1 Filter.

Require: Set of points 𝑆
Ensure: Set of points candidates to the hull

1: {𝑙𝑒𝑓 𝑡, 𝑡𝑜𝑝, 𝑟𝑖𝑔ℎ𝑡, 𝑑𝑜𝑤𝑛, 𝑐1, 𝑐2, 𝑐3, 𝑐4} ← FINDINGPOLYGON(𝑆)

2: 𝑏𝑖𝑡_𝑣𝑒𝑐𝑡𝑜𝑟_𝑓𝑙𝑎𝑔 ← BUILDINGFILTER(𝑆, 𝑙𝑒𝑓 𝑡, 𝑡𝑜𝑝, 𝑟𝑖𝑔ℎ𝑡, 𝑐1, 𝑐2, 𝑐3, 𝑐4)

3: 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑_𝑠𝑒𝑡 ← COMPACTINGFILTEREDPOINTS(𝑏𝑖𝑡_𝑣𝑒𝑐𝑡𝑜𝑟_𝑓𝑙𝑎𝑔)

4: 𝑜𝑢𝑡𝑝𝑢𝑡 ← CONVEXHULL_ALGORITHM(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑_𝑠𝑒𝑡)

5: return 𝑜𝑢𝑡𝑝𝑢𝑡

Fig. 3. The illustration shows the underlying idea of parallel scan compaction. 
The input points that we want to preserve are marked in gray, setting a 1 at 
each gray cell. Then the scan of each combined 1 is calculated.

The naming convention for the variants is the following: the first 
word, GPU, Thrust or Cub, indicates whether the method of finding the 
extreme points is using parallel reductions in a GPU kernel or through 
the Thrust or Cub functions, respectively. The second word (Scan, Copy, 
or Flagged) refers to a specific feature that differentiates each variant 
from the others during compaction.

4.1. GPU implementation from scratch: gpu_scan

The basic idea of this filter implementation is to use only custom 
GPU kernels and techniques of GPU programming. It computes the ex-

treme points using parallel reduction techniques based on cuda-shuffle 
operations [41,42] to find the minimum and maximum point coordi-

nates of each axis (leftmost, rightmost, highest, and lowest). Once the 
extreme points are obtained, the other four points of the eight-sided 
polygon (C1, C2, C3, and C4) are also calculated using parallel reduc-

tion using the Manhattan distance.

To find the candidate points for the hull, we use a GPU kernel per 
input point to check if this point is inside or outside the eight-sided 
polygon. The result of this parallel check is an array of half (FP16 pre-

cision) of size 𝑛 (the same size as the number of input points) where 
each half represents a bit. Each element is marked with 1 indicating 
that a point is a candidate for the hull, otherwise, it is marked with 0
indicating that the point has been discarded from the convex hull com-

putation. Fig. 3 shows each phase of the compaction phase where it is 
possible to see a set of points as input, a half-array as a bit-vector, the 
scanning phase, and a compacted set of points as output.

Now we have a sparse bit-vector that identifies whether a point is a 
candidate for the hull or not. Since it is necessary to call the state-of-

the-art algorithm to compute the convex hull with only the candidate 
points, the candidate points must be stored consecutively in an array. 
Fig. 3 shows a strategy that copies all items marked as 1 and discards 
those marked as 0. Following this idea, the location of each element 
marked with 1 is given by the sum accumulation (scan) [43] relative 
to the first point. This copy process requires two steps: scanning and 
scattering, and it takes logarithmic time.

• The scanning step performs a partial sum (scan) on the half array 
generated in the previous step. Each element that passes the filter 
and is a candidate for the convex hull adds a position in the scan 

accumulation.

https://github.com/rcarrascoc/GPU-2D-Convex_Hull_Filter
https://github.com/rcarrascoc/GPU-2D-Convex_Hull_Filter
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• The scattering step places each point that is a candidate for the 
convex hull in the output array.

This implementation uses scanning techniques that take advantage 
of the tensor cores of modern GPUs in mixed precision (half and inte-

ger). This technique can be divided into three main steps:

• Segmented scanning: Tensor cores (TCs) are used to perform a seg-

mented scan on the temporary vector generated in the previous 
step, as described in [21]. This step generates the new locations 
for each point with respect to each segment. The TC scanning algo-

rithm uses a mixed precision, where the input is a half array (FP16) 
and the output is a float array, this is due to the type restrictions 
of the WMMA operation. The block-segmented scanning takes the 
output of the TC scanning and produces an integer array as a result.

• Global scanning: using the most significant values of each segment 
is computed the scan of all segments using CUDA cores and single 
precision. This scan says the location of each segment with respect 
to the global position.

• Compaction: Using the new locations generated in the previ-

ous step, the points that are candidates for the hull are com-

pacted into the output array. Where the final location is given the 
𝑠𝑒𝑔𝑚𝑒𝑛𝑡[𝑝𝑜𝑠] + 𝑔𝑙𝑜𝑏𝑎𝑙[𝑝𝑜𝑠∕𝑛𝑢𝑚_𝑠𝑒𝑔𝑚𝑒𝑛𝑡].

4.2. Implementations using the thrust library

The Thrust API provides an easy-to-use high-level interface for par-

allel programming on CUDA-enabled GPUs. It offers a wide range of 
functionalities such as scan, sort, minimum-maximum reductions, data 
transformations, and array compaction, which have been widely used 
in previous works on convex hull algorithms in GPU [26,27]. However, 
it should be noted that the maximum size of vectors that can be pro-

cessed with Thrust is 230 points, which may limit its use in cases where 
a larger point set is processed.

API Thrust offers the min_element and max_element func-
tions, which return the indices of the minimum and maximum ele-

ments of a list, respectively. Both functions are used to find the extreme 
points, and then, the min_element function is used again to compute 
the input point with the minimum Manhattan distance to each bound-

ing box corner. Finally, a lambda function (transform) is used to check 
if each point belongs to the hull, using a bit vector and the scope of 
each quadrant.

Thrust provides two ways to process the bit-vector and to create an 
array with just the candidate points.

4.2.1. Thrust_scan

This variant uses the same strategy as the scan variant (subsection 
4.1) but utilizes the exclusive_scan function from Thrust to obtain 
the partial sum (scan) from a bit-vector generated during the filter stage. 
However, it is necessary to transform the vector resulting from the pre-

fix sum into a compatible array stored in GPU memory, which is done 
by scattering the correct addresses of each point in a call to the GPU ker-

nel. This variant takes advantage of the efficient reduction offered by 
Thrust. However, it incurs an additional computational cost when cast-

ing a Thrust vector to a GPU array, which can be avoided, as described 
in the next variant, by using a slower operation for compaction.

4.2.2. Thrust_copy

The copy_if function provided by Thrust allows copying elements 
of an initial array to a new, smaller array based on a given condition. In 
this scenario, the condition is determined by the filter, where a point is 
retained if it is marked as 1 by the filter and discarded if it is marked as 
0. While the copy_if function performs well when the filter discards a 
significant number of points, it may become computationally expensive 
5

when the filter retains a large number of points.
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4.3. Implementation using the cub library: Cub_flagged

This variant is implemented using the Cub library that offers cutting-

edge, reusable software components for various layers of the CUDA 
programming model. It includes three levels of Cub primitives:

• Warp-wide “collective” primitives that operate within a single 
warp.

• Block-wide “collective” primitives that operate across all threads 
within a block.

• Device-wide primitives that operate across all threads and blocks 
on the device.

The first two levels correspond to operations that take place within a 
kernel, and the last level corresponds to operations on the host. In the 
implementation of this variant, device-wide primitives are used.

Cub provides the device-wide primitive functions called ArgMax

and ArgMin to find the maximum and minimum, respectively, repre-

sented as a pair of key-value, where the key corresponds to the index 
of the point, and the value corresponds to the coordinate value, these 
functions are equivalent to min_element and max_element func-

tions provided by Thrust. Additionally, Cub provides a function for

scanning, however, during experimentation it does not show better 
performance than the other implemented variants.

A faster way to implement the CompactingFilteredPoint phase 
(Algorithm 1, line 3) is to use the device-wide function provided by 
Cub to compact selected elements of data streams stored in accessi-

ble device memory in parallel, instead of scan-based compaction. This 
operation applies a selection criterion to selectively copy items from 
a specified input sequence to a compact output sequence. It uses in 
terms of the programming language, the d_flags sequence to deter-

mine which items from d_in to copy into d_out, and the total number 
of selected items is written to d_num_selected_out. This function 
allowed us for efficient and parallel compaction of data on the device.

5. Study cases

The number of filtered points is strongly dependent on the point 
distribution in the plane, where if the points are concentrated at the 
center of the point cloud, the number of filtered points is greater than 
if all the points are at the edge of the cloud. This work explores three 
different and interesting scenarios to study the behavior of the proposed 
filtering process and a fourth case where it explores the behavior of the 
algorithm with intermediate distributions: (1) a normal distribution, (2) 
a uniform distribution, (3) a perfect circumference, and (4) a displaced 
circumference.

1.- Normal Distribution - Favorable case: A normal distribution is 
usually found in many problems such as physical phenomena, hu-

man behavior, sciences, and other disciplines, this distribution is a 
naturally tends to behave similarly to a Gaussian distribution, as in 
Fig. 4 (a). This test generates 𝑛 random points normally distributed 
in the plane with 𝜇 = 0.5 and 𝜎2 = 0.1. Some output-sensitive con-

vex hull algorithms take advantage of this type of case.

2.- Uniform Distribution - Favorable case: Uniform distribution is a 
favorable case where it manages to filter a large amount of points. 
In Fig. 4 (b) it is possible to see the distribution on the plane. This 
test generates 𝑛 random points uniformly distributed in the plane 
with the same parameters of the previous distribution (𝜇 = 0.5 and 
𝜎2 = 0.1).

3.- Perfect Circumference - Worst case: Fig. 4 (c) shows the case 
when all points are part of a circumference, and so all points are 
in the convex hull. Since no point is filtered, this is the worst case 
for the proposed algorithm. Unlike the normal distribution, output-
sensitive algorithms are not effective, since the number of filtered 
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Fig. 4. Graphic representation of the distributions. The figure on the left side corresponds to a normal distribution with a mean of 1 and a standard deviation of 0.1. 
Next to it is a uniform distribution with a mean of 1 and a standard deviation of 0.1. Finally, the figure on the right is a circumference centered at the origin with a 
radius of 1.

Fig. 5. The intermediate-case test with randomly selected displacement at different values.
points is not less than the original input set. In this case, it is rec-

ommendable to use an algorithm to guarantee a good performance 
in 𝑂(𝑛 log𝑛).

4.- Displaced Circumference - Intermediate case: This test permits 
us to model point distributions with more or fewer points belonging 
to the hull. Here we look for the tipping point where the algorithms 
start to perform well. The test is created by generating n points on 
a circumference (or very close to it) centered at the origin with 
radius 𝑟 = 0.25. The test offers a 𝑝 parameter to be chosen, which 
produces a displacement probability for each point in the range 
[𝑟 − 𝑟𝑝, 𝑟 + 𝑟𝑝]. This displacement may move the point inwards to 
the center or outwards the circumference, making a band of points 
surrounding the circumference. Fig. 5 shows the displacement for 
different 𝑝 values.

6. Experiments and results

This section is divided into two parts. In Section 6.1 we show the 
performance comparison among the four GPU variants, two multicore 
implementations, and two sequential implementations. In Section 6.2, 
the comparison against implementations of the state-of-the-art, both 
sequential and GPU implementations, is presented for the whole com-

putation of the convex hull. The state-of-the-art sequential algorithm 
for computing the convex hull is from the CGAL 5.5 library, one of the 
most widely used and cited libraries.

It is worth mentioning that the implementations are in C++ with 
-O3 optimization on the CPU and in CUDA with NVCC 11.4.2 on the 
GPU. Single-precision floating-point arithmetic (FP32) is used. We per-

form all experiments on the Patagón supercomputer [44], which has 
one Nvidia DGX A100 node with 8× A100 GPUs, 2x AMD EPYC 7742 
CPU (2.6 GHz, 64-cores, 256 MB L3 cache), 1 TB RAM DDR4-3200 Hz, 
and 8x Nvidia A100 GPUs 40 GB. The experiments only use one A100 
GPU.

Note, the timing measurements were taken by running the algorithm 
as if it was a library. The time was measured before calling the function 
and after returning the results in the main program, so all the host-
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device copy time is considered in the experiment.
6.1. Comparison among filtering implementations

In order to present a more complete performance evaluation study, 
we do not only include a comparison among the GPU variants described 
in the previous section, but we also include two multi-core and two se-

quential implementations, and a filtering algorithm using the Euclidean 
distance metric, implemented in the CPU, named as cpu_euclidean, 
will be considered as the baseline algorithm for the speedup evaluation. 
In the next lines, we summarize the naming convention used to refer to 
each implementation based on the algorithm proposed in the previous 
section.

• thrust_copy: GPU implementation using the Thrust library’s 
copy function, the Manhattan distance, and the min_element and

max_element functions for reduction.

• thrust_scan: GPU implementation using the Thrust library’s 
scan function, Manhattan distance, and the min_element and

max_element functions for reduction.

• cub_flagged: GPU implementation using the Cub library’s 
flagged function for compaction, Manhattan distance, and the

ArgMax and ArgMin functions for reduction.

• gpu_scan: GPU implementation using a CUDA kernel for reduc-

tion, the scan algorithm for compaction, and the Manhattan dis-

tance.

• omp_manhattan: CPU-parallel implementation using OpenMP re-

ductions and compaction, and using Manhattan distance.

• omp_euclidean: CPU-parallel implementation using OpenMP re-

ductions and compaction, and using Euclidean distance.

• cpu_manhattan: CPU-sequential implementation using tradi-

tional CPU programming and Manhattan distance.

• cpu_euclidean: CPU-sequential implementation using tradi-

tional CPU programming and Euclidean distance (base-line).

Fig. 6 shows the speedup of all the proposed filtering implemen-

tations with respect to the baseline filtering algorithm applied to a 
normal, uniform, and circumferential point distribution. We can ob-

serve in Fig. 6 (a) and (b) that the fastest variant on the normal and 

uniform point distribution is thrust-copy with a speedup up to 17.5×
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Fig. 6. Speedup over the cpu_euclidean filter, considering only the preprocessing filtering phase, for all our proposed variants implemented in GPU, CPU-

sequential, and CPU-parallel (using OpenMP with 32 threads), respectively; for normal, uniform, and circumference distributions. The point range is between 225
and 230 , with equidistant sampling.

Table 1

Comparison of the number of candidate points to the hull (and percentage of points) after filtering using Euclidean and Manhattan metrics for normal and uniform 
distributions.

Size Normal Distribution Uniform Distribution

# Points (Euclidean) # Points (Manhattan) # Points (Euclidean) # Points (Manhattan)

33M 135 (4.02𝑒−6%) 143 (4.26𝑒−6%) 7120 (0.0212%) 8106 (0.0241%)

234M 122 (5.19𝑒−7%) 191 (8.13𝑒−7%) 17871 (0.0076%) 16699 (0.0071%)

436M 164 (3.75𝑒−7%) 145 (3.32𝑒−7%) 29925 (0.0069%) 21107 (0.0048%)

637M 311 (4.87𝑒−7%) 776 (1.21𝑒−6%) 43613 (0.0068%) 36116 (0.0057%)

838M 336 (4.00𝑒−7%) 929 (1.10𝑒−6%) 40671 (0.0048%) 43703 (0.0052%)

1,040M 260 (2.49𝑒−7%) 122 (1.17𝑒−7%) 51962 (0.005%) 42085 (0.004%)
and the rest of the GPU and CPU-parallel variants are between 6 ∼ 7.5×. 
On the contrary, on the circumference point cloud, the thrust-copy

is the slowest GPU variant (Fig. 6 (b)). This fact is because the copy 
function of Thrust makes use of atomic functions to rewrite the input 
array to a smaller one, which implies a sequential write to the GPU 
which is extremely fast for a small input but expensive for a larger one, 
meanwhile, the other GPU variants work with a scan-based compaction 
in parallel. As for the other variants and parallel implementation of 
the CPU, it is observed that they have a similar behavior regardless 
of the point distribution used. On the other hand, the CPU-parallel 
variants (omp_manhattan and omp_euclidean) present the worst 
performance of all, this is due to the need to reserve a critical area for 
compaction that breaks the parallelism of the algorithm and penalizes 
the performance. It is important to note that in GPU implementations, 
the times to copy from the device to host, and host to device are con-

sidered in this experiment.

Table 1 presents a comparison of the number of points after fil-

tering using the Euclidean and Manhattan metrics for both normal 
and uniform distributions. The input sizes range from 33, 554, 432 to 
1, 040, 187, 392. In the case of the normal distribution, the Euclidean 
filtering resulted in a range of 122 to 336 points, while the Manhat-

tan filtering ranged from 122 to 929 points. Notably, the percentage 
of points remaining after filtering was extremely low, ranging from 
2.49𝑒−7% to 4.02𝑒−6% for the Euclidean metric, and 1.17𝑒−7% to 1.21𝑒−6%
for the Manhattan metric. For the uniform distribution, the number 
of points after filtering using the Euclidean metric ranged from 7, 120
to 51, 962, while the Manhattan metric resulted in a range of 8, 106 to 
43, 703 points. These findings highlight the effectiveness of the filtering 
process in significantly reducing the number of points in both distri-

butions. The low percentages indicate that the filtering criteria were 
stringent, resulting in a highly refined input. Such filtering can be valu-

able in data analysis tasks that require a reduced and more focused 
input, potentially enhancing the efficiency and accuracy of subsequent 
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analyses.
As a second experiment, the performance of all our proposed vari-

ants including the convex hull calculation is measured, in this work 
the fastest convex hull implementation provided by the CGAL library 
(CGAL:convex-hull-2) is used to calculate the hull. In Fig. 7 (a) 
and (b) the copy-thrust reach up to 17.5× with respect to the ref-

erence implementation. In the uniform distribution, the GPU variants 
are slightly faster than the CPU-parallel variants. For the circumference 
case (Fig. 7 (c)), the GPU variants are the fastest reaching up to 1.14×
of speedup, excepting the copy-thrust variant that is only 5.5× faster 
than the CPU variants. Finally, CPU-parallel variants are the slowest 
variant for the circumference.

6.2. Filter + CPU convex hull

This experiment is to compare the performance of our fastest variant 
with the fastest implementations in the state-of-the-art including cud-

achain, an implementation using the GPU. So the following variants 
are considered: thust_copy as the fastest GPU variant, gpu-scan as 
an implementation that supports large inputs and is the benchmark for 
the other GPU variants, omp_manhattan as the fastest CPU parallel 
variant and cpu_euclidean as the sequential CPU variant reference, 
all of them use CGAL:convex_hull_2 to calculate the hull after the 
filter, and cudachain as the state-of-the-art implementation using the 
GPU:

• CGAL:convex_hull_2: The fastest CPU-sequential implementa-

tion provided byCGAL. It corresponds to a hybrid algorithm that 
chooses between an 𝑂(ℎ𝑛) or 𝑂(𝑛 log𝑛) technique depending on the 
distribution.

• CGAL:graham_andrew: A fast 𝑂(𝑛 log𝑛) implementation provided 
byCGAL.

• Qhull: A CPU-sequential implementation based on Qhull algo-
rithms to compute the convex hull.
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Fig. 7. Speedup of filter + CGAL:convex_hull_2 over the convex hull filtered with cpu_euclidean, for all our proposed variants implemented in GPU, CPU-

sequential, and CPU-parallel (using OpenMP with 32 threads), respectively; for normal, uniform, and circumference distributions. The point range is between 225
and 230 , with equidistant sampling.

Fig. 8. Speedup of our fastest filters + CGAL:convex_hull_2 over CGAL:convex_hull_2, for our fastest proposed variants implemented on GPU, CPU-sequential, 
CPU-parallel (using OpenMP with 32 threads), and some fast implementation on the state-of-the-art (CGAL, Qhull and cudachain); for normal, uniform and 
circumferential distributions. The range of points is between 225 and 230 , with equidistant sampling.
• cudachain: A fast hybrid GPU-CPU implementation provided by 
Mei [45].

Fig. 8 shows the performance of the proposed filters using CGAL:

ch_graham_andrew, the fastest implementation provided byCGAL. 
The speedup used in this benchmark is calculated with respect to

CGAL:ch_convex_hull_2. The acceleration time for a normal dis-

tribution shown in Fig. 8 (a) indicates that the thrust_copy variant 
offers a significant acceleration of 23×. At the same time, the other GPU 
and CPU variants in parallel achieve a speedup of 8 ∼ 10×. In contrast, in 
an uniform distribution (Fig. 8 (b)), thrust_copy is up to 160× faster 
than the reference implementation, gpu_scan and omp_manhattan

file between 35 ∼ 70× speed up, followed by cudachain implemen-

tation which has 20 ∼ 30× of speedup; this acceleration is possible 
because CGAL:convex_hull_2 chooses the best algorithm for each 
input set, in the case of uniform distribution, the most expensive phases 
are the first iteration of the algorithm, which are performed by our 
filter previously, then the algorithm saves this time. In the last case 
study, acceleration with any preprocessing algorithm is not possible 
given the nature of the circumference where the entire points are candi-

dates to the hull, as shown in Fig. 8 (c) where only the 𝑛 log𝑛 algorithm 
(CGAL:ch_graham_andrew) is faster than the non-filtered implemen-

tation. It is also possible to mention that in this case, cudachain

requires more GPU memory than our implementations, on the other 
hand, the Qhull library only supports up to 234 million points (due to 
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implementation limitations) for any of the study cases.
Using the displaced circumference study case, Table 2 and Fig. 9

and 10 illustrate the minimum number of points that is necessary for 
the filtering algorithm to speed up the computation of the hull. Fig. 9

(a) shows the time it takes to filter a small set of points. Instead, Fig. 9

(b) shows the filtering time for a large set of points. As can be seen, 
the behavior of both data sets is different, where the Table 2 indicates 
that for a small data set, it is required to filter 𝑝 < 0.03 so that the 
filtering speeds up the computation of the closure, and for large data 
sets 𝑝 < 0.01 is required, which results in the removal of about 6% of 
points. Furthermore, it is crucial to consider that the highest acceler-

ation is achieved with 𝑝 = 0.1, as observed in Fig. 9, where a valley 
is reached with the maximum acceleration in Fig. 10. Finally, we can 
see the speedup for both datasets in Fig. 10, where the fastest variant 
(thrust-copy) reaches up to 30× over CGAL:convex-hull-2 for a 
large data set in 𝑝 = 0.1.

7. Discussion and conclusion

A complete performance evaluation of the most recent GPU filter-

ing techniques against state-of-the-art approaches has been presented in 
this work to solve the 2D Convex hull problem. This work contributes 
to providing four implementations: one CUDA kernel programmed from 
scratch, two implementations using the Thrust library, and one using 
the Cub library while highlighting the advantages and disadvantages 
of each. These four variants were also compared against the imple-

mentation cudachain, one state-of-the-art GPU implementation, and 

multicore versions.
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Fig. 9. Running time of the convex hull algorithm for a displaced circumference (intermediate case) varying 𝑝 between [0,0.3], and fixed size.

Fig. 10. Speedup of the convex hull algorithm over CGAL:convex-hull-2 for a displaced circumference (intermediate case) varying 𝑝 between [0, 0.3], and fixed 

size.

Table 2

Average percentage of discarded points at the filtering stage in the algorithm 
for a displaced circumference, and speed up the fastest variant with respect to
CGAL:ch-graham-andrew.

𝑛 = 107 points 𝑛 = 109 points

𝑝 filtered % Speedup filtered % Speedup

0.00 0.01 0.88 0.01 0.92

0.02 13.08 0.94 13.04 1.02

0.04 28.58 1.21 28.69 1.24

0.06 48.48 1.62 48.51 1.75

0.08 81.88 4.83 81.71 4.82

0.10 97.16 20.46 97.17 23.42

The filtering method employed in this work builds an eight-vertex 
polygon, where all interior points are discarded, and utilizes parallel 
min-max reduction and the Manhattan distance to compute the cor-

ners. Manhattan distance simplifies the computation and eliminates the 
need for multiplication and square root operations (for squared dis-

tances). The experimental results using randomly generated points with 
a normal distribution in 2D space indicate that the proposed method 
accelerates the computation of the convex hull by 160× with respect 
to CGAL:convex-hull-2 function provided by CGAL for the best of 
cases.

In cases where all points lie on the convex hull, such as in circular 
distributions, the proposed approach does not offer any benefit as the 
filtering algorithms do not remove points, a characteristic of all state-of-

the-art algorithms. However, the cost of running the filtering algorithm 
on the GPU is minimal (less than 6%) compared to running it on the 
CPU. This means that using the GPU-based filtering process only results 
9

in a small increase in computation time for the convex hull. In some 
cases, depending on the application, it may be acceptable to bear the 
cost in exchange for the potential speedup in other scenarios.

A positive aspect of this work is the scalability of the algorithm. 
The Thrust and Cub libraries provide a fast and user-friendly API for 
developing parallel algorithms. However, the functions for computing 
the minimum and maximum points are unsuitable for processing large 
data sets (more than 230 points). CGAL also has a maximum limit of 230
points. On the other hand, the proposed GPU-kernel implementation is 
easily scalable and can process a larger number of points as long as the 
graphic memory allows it. Moreover, the GPU-kernel implementation 
achieves the same performance as the variants based on libraries.

The experimental results indicate that this methodology is efficient 
in most cases, and even in the worst-case scenario, the filtering effort 
has a small performance penalty compared to a traditional Convex Hull 
computation. Moreover, the worst-case scenario is in most cases very 
unlikely to occur. As future work, it would be interesting to study a 
complete parallel convex hull algorithm on the GPU, utilizing the pro-

posed preprocessing approach and avoiding unnecessary data copying 
between the device and host memory. Additionally, accelerating the 3D 
convex hull and leveraging tensor and ray tracing cores for this task 
have become relevant topics.
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