Automatic construction of non-obtuse boundary and/or interface Delaunay triangulations for control volume methods

Abstract

Abstract A Delaunay mesh without triangles having obtuse angles opposite to boundary and interface edges (obtuse boundary/interface triangles) is the basic requirement for problems solved using the control volume method. In this paper we discuss postprocess algorithms that allow the elimination of obtuse boundary/interface triangles of any constrained Delaunay triangulation with minimum angle ε. This is performed by the Delaunay insertion of a finite number of boundary and/or interface points. Techniques for the elimination of two kinds of obtuse boundary/interface triangles are discussed in detail: 1-edge obtuse triangles, which have a boundary/interface (constrained) longest edge; and 2-edge obtuse triangles, which have both their longest and second longest edge over the boundary/interface. More complex patterns of obtuse boundary/interface triangles, namely chains of 2-edge constrained triangles forming a saw diagram and clusters of triangles that have constrained edges sharing a common vertex are managed by using a generalization of the above techniques. Examples of the use of these techniques for semiconductor device applications and a discussion on their generalization to 3-dimensions (3D) are also included. Copyright © 2002 John Wiley & Sons, Ltd.

Publication
International Journal for Numerical Methods in Engineering
Nancy Hitschfeld Kahler
Nancy Hitschfeld Kahler
+Lab founder | Full Professor Universidad de Chile

Full Professor at the Department of Computer Science, University of Chile. Her main research interests include geometric modeling, geometric meshes, and parallel algorithms (GPU computing), focused in computational science, and engineering applications.