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Abstract
Topological Data Analysis (TDA) is an emerging field that aims to discover a dataset’s
underlying topological information. TDA tools have been commonly used to create
filters and topological descriptors to improve Machine Learning (ML) methods. This
paper proposes a different TDA pipeline to classify balanced and imbalanced multi-
class datasets without additional ML methods. Our proposed method was designed
to solve multi-class and imbalanced classification problems with no data resampling
preprocessing stage. The proposed TDA-based classifier (TDABC) builds a filtered
simplicial complex on the dataset representing high-order data relationships. Fol-
lowing the assumption that a meaningful sub-complex exists in the filtration that
approximates the data topology, we apply Persistent Homology (PH) to guide the
selection of that sub-complex by considering detected topological features. We use
each unlabeled point’s link and star operators to provide different-sized and multi-
dimensional neighborhoods to propagate labels from labeled to unlabeled points. The
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labeling function depends on the filtration’s entire history of the filtered simplicial
complex and it is encoded within the persistence diagrams at various dimensions. We
select eight datasets with different dimensions, degrees of class overlap, and imbal-
anced samples per class to validate our method. The TDABC outperforms all baseline
methods classifying multi-class imbalanced data with high imbalanced ratios and data
with overlapped classes. Also, on average, the proposed method was better than K
Nearest Neighbors (KNN) and weighted KNN and behaved competitively with Sup-
port Vector Machine and Random Forest baseline classifiers in balanced datasets.

Keywords Topological data analysis · Persistent homology · Simplicial complex ·
Supervised learning · Classification · Machine learning

Mathematics Subject Classification 55N31 · 62R40 · 68T09 · 62R07 · 68T10

1 Introduction

Classification is a Machine Learning (ML) task that uses known data labels to label
data with an unknown category. Classification faces challenges such as high dimen-
sionality, noise, and imbalanced data distributions. Topological Data Analysis (TDA)
has been successful in reducing dimensionality (Luo et al. 2021), and it has demon-
strated robustness to noise by inferring a dataset’s underlying topology (Edelsbrunner
and Harer 2010). However, how TDA can classify imbalanced datasets has not been
explored.

Persistent Homology (PH) is a powerful tool in TDA that captures the topological
features in a nested family of simplicial complexes built on data, according to an
incremental scale value (Edelsbrunner and Harer 2010). These topological features
are encoded, considering scale values at which they appear (born) and disappear or
merge (die). The numerical difference between birth and death scales is the topological
feature’s persistence, also known as the lifetime or lifespan. The evolution of the
simplicial structure is encoded using high-level representations called barcodes and
persistence diagrams (Edelsbrunner and Harer 2010).

Regarding the relation betweenPHand classification problems, existing approaches
consider hybrid TDA+ML methods, which combine topological information with
conventional ML classifiers. Topological information is extracted from persistence
diagrams and barcodes, for instance, by vectorizing (Adams et al. 2017; Bubenik and
Dłotko 2017), computing distances, summarizing persistence diagrams via topological
curves (Chung and Lawson 2022), or kernel approaches (Carrière et al. 2017; Hofer
et al. 2017; Atienza et al. 2020; Carriere et al. 2020). A comprehensive Topological
ML (TDA+ML) survey was presented in Hensel et al. (2021). More recently, in Ali
et al. (2022), the authors study thirteen methods of vectorizing persistence homology
barcodes and persistence diagrams, discovering that the best-performing method is
simple (naive) vectorization obtained by collecting basic statistical quantities associ-
ated with (the multiset of) intervals in a given barcode.

Examples of these hybrid TDA+ML methods are TDA+SVM for high-resolution
diabetic retinopathy images classification (Garside et al. 2019), and TDA+KNN,
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TDA+Convolutional Neural Network, and TDA+SVM for time series classifica-
tion (Venkataraman et al. 2016; Seversky et al. 2016; Umeda 2017). TDA+RF and
TDA+SVM for image, triangular meshes, and cloud classification in Ali et al. (2022).
Self-Organized Maps were combined with PH tools to cluster and classify time series
in the financial domain (Majumdar and Laha 2020). There are also TDA applications
in Deep Learning to address the interpretability problem (Carlsson and Gabrielsson
2020), to regularize loss functions (Gabrielsson et al. 2020), to build a persistence
layer to consider topological information during learning (Gabrielsson et al. 2020).

Regarding imbalanced data distributions, approaches to address the imbalanced
classification problem can be mainly classified into data level (also known as resam-
pling), and algorithmic level approaches (Fernández et al. 2018). Data resampling
methods balance data by augmenting or removing samples from minority or majority
classes. The Synthetic Minority Oversampling Technique (SMOTE) is the conven-
tional geometric approach to balance classes by oversampling the minority class
(Chawla et al. 2002). Multiple variations of SMOTE have been developed (Goyal
et al. 2021), including novel approaches such as the SMOTE-LOF, which considers
the Local Outlier Factor (Asniar and Surendro 2022) to identify noisy synthetic sam-
ples. Furthermore, overlapping samples from different classes have been a big issue
in imbalance problems. Neighborhood under-sampling from the majority class on the
overlapped region has been applied to achieve better results (Vuttipittayamongkol and
Elyan 2020). These heuristics are simple and can be combined with any classifier as
theymodify the training set, although they assume data points can always be discarded
or generated. In contrast, SVM, RF, or neural network adaptations modify their objec-
tive function to give higher relative importance to minority class samples (Ibrahim
et al. 2021). More related to our work, Zhang et al. (2017) proposes the Rare-class
Nearest Neighbour (KRNN), which defines a dynamic neighborhood based on the
inclusion of at least k positive samples (Zhang et al. 2017).

Undersampling and oversampling techniques can be applied as a preprocessing
stage of any classifier; however, it could be challenging to devise a winning resampling
approach to apply in a multi-class imbalanced data classification problem. Having
classes A, B, and C, class A can be a majority class regarding class B, and B can be,
at the same time, a majority class concerning class C, making it hard to resample B.
This scenario is known as the problem of multi-minority and multi-majority classes
(Fernández et al. 2018). A typical approach is to split the problem intomultiple binary-
imbalanced data classification subproblems and perform resampling per subproblem,
but other issues may arise. Addressing the multi-class imbalanced classification prob-
lem has the advantage of considering class relationships. On the contrary, we can lose
information due to binarization (Fernández et al. 2018).

According to Fernández et al. (2018), the imbalance ratio is not the only cause of
performance degradation on imbalance problems. Another big concern is the intrinsic
data complexity. When samples from different classes are linearly separable standard
classifiers behave well. Yet, even state-of-the-art methods may fail where noise and
overlapped classes complicate the classification. Gaining knowledge concerning data
complexity may help creating successful approaches to deal with imbalanced data
classification problems. In this context, TDA has proven to be a well-established
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tool for understanding the data topology that can be applied to unravel the intrinsic
complexities of data.

This work proposes a method entirely based on TDA to classify imbalanced and
noisy datasets without resampling. The main idea is to provide multidimensional and
multi-size neighborhoods around each unlabeled point. We use topological invariants
computed through PH to detect appropriate neighborhoods. These neighborhoods are
then used to propagate labels from labeled to unlabeled points.Apreliminary version of
thiswork is available inKindelan et al. (2021). The samemethod is applied to balanced,
binary- and multi-imbalanced data. We conduct experiments in eight datasets cover-
ing different aspects like class overlapping (non-easily separable classes), multiple
imbalanced ratios, and high dimensions (more dimensions than samples). We com-
pare the proposed method with KNN, weighted-KNN, Linear SVM, and RF baseline
classifiers. The KNN algorithm is one of the most popular supervised classification
methods used in the backbone of SMOTE techniques. The second baseline method
is an enhanced version of KNN, the weighted KNN (WKNN) especially suited for
imbalanced datasets. Linear SVM and RF, two popular classifiers, are also applied as
algorithmic approaches to deal with imbalanced data.

This document is organized as follows. The fundamental concepts and mathemat-
ical foundations used in this work are presented in Sect. 2. Section 3 explains the
concepts, algorithms, and methodology related to the proposed classification method.
Next, Sect. 4 describes the experimental protocol to assess the proposed and baseline
algorithms. Section 5 includes a discussion of the results and the proposed solution.
Conclusions are presented in Sect. 6.

2 Fundamental concepts

This section introduces mathematical definitions to explain our proposed method; for
a complete theoretical basis, see Edelsbrunner and Harer (2010) and Rabadan and
Blumberg (2019).

2.1 Simplicial complexes

Simplicial complexes are combinatorial and algebraic objects that can represent a
discrete space encoding topological features of the data space.

Definition 1 (Simplicial complex and simplices) An abstract simplicial complex K,
is a set of non-empty sets such that if σ is an element of K, then every subset τ ⊂ σ

is also in K (Rabadan and Blumberg 2019). Each element σ of K is called a simplex
(simplices in plural), as we show in Fig. 1. Every subset τ of σ is a face of σ and has
σ as a coface. We represent the face and coface relationships as τ ≤ σ and σ ≥ τ ,
respectively.When a simplex σ does not have proper cofaces, it is known as amaximal
simplex.

The dimension of a simplex σ is defined as dim(σ ) = |σ | − 1, and the dimension
of K is dim(K) = max{dim(σ ) | σ ∈ K}. We denote by K(0) the vertex set of K.
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Fig. 1 Given a point set {s2, s3, s4, s5}, we show examples of low dimensional simplices, with 0-simplices
as black points, 1-simplices as purple line segments, 2-simplices and the 3-simplex as red triangles

There are many possible ways to build abstract simplicial complexes on point
sets, though two of the most popular are the Čech and Vietoris-Rips (VR) complexes,
see (Ghrist 2008; Edelsbrunner and Harer 2010). From a computational perspective,
VR complex is more practical than Čech during the construction phase since it only
requires computing distances between points instead of checking all possible inter-
sections of balls centered at the points for all radii. Besides, the Rips complex is a
flag complex, meaning its 0 and 1-dimensional simplices can fully characterize it.
Consequently, there is no need to store it explicitly, resulting in significant savings in
memory resources.

Definition 2 (Star and Link) LetK be a simplicial complex, and σ ∈ K be a q-simplex.
The star of σ in K is the set of all cofaces of σ in K (Edelsbrunner and Harer 2010):

StK(σ ) = {τ ∈ K | σ ≤ τ }. (1)

The link of σ is the set of simplices with cofaces in StK(σ ) that do not share any face
with σ (Edelsbrunner and Harer 2010):

LkK(σ ) = {τ ∈ K | τ ∪ σ ∈ K and τ ∩ σ = ∅}, (2)

or equivalently:

LkK(σ ) =
⋃

μ∈StK(σ )

{μ \ σ }. (3)

Figure 2 presents an example of the star and link of the 0-simplex {s4} in a given
simplicial complex K built on a point set S = {s2, s3, s4, s5}.

2.2 Persistent homology

The objective of PH is to track how topological features on a topological space appear
and disappear when a scale value (usually a radius) varies incrementally, in a process
known as filtration (Edelsbrunner and Harer 2010).
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Fig. 2 Example of StK({s4}) and LkK({s4}) on a given simplicial complex (a tetrahedron and all its faces)
K

Definition 3 (Filtration value of a q-simplex) Let K be a simplicial complex. Let
σ ∈ K be a q-simplex. A function f : K → R

+ satisfying f (τ ) ≤ f (σ ), whenever
τ ≤ σ is called a level-set function. WhenK is endowed with such a level-set function
f , we call it a filtered simplicial complex, and therefore we can get a sub-complex
Ki = {σ ∈ K; f (σ ) ≤ εi } for any level value εi > 0, namely Ki = f −1([0, εi ]). For
a simplex σ ∈ K, we call f (σ ) its filtration value.

Definition 4 (Filtration) Let K be a filtered simplicial complex. A filtration of K is a
succession of increasing sub-complexes of K:

∅ ⊆ K0 ⊆ K1 ⊆ K2 ⊆ K3 ⊆ · · · ⊆ Kn = K.

We consider Ki = {σ ∈ K; f (σ ) ≤ εi }. These sub-complexes form a filtration of K.
Note that the condition τ ≤ σ �⇒ f (τ ) ≤ f (σ ) means that in a filtered simplicial
complex K with the filtration associated to f (·), every simplex τ ∈ K appears before
all its cofaces.

Different types (or dimensions) of topological features exist in a filtered simplicial
complex. The topological features of dimension 0 are the connected components.
The topological features in dimension 1 are 1-cycles (closed chains of 1-simplices),
which appear as holes. In dimension 2, closed chains of 2-simplices connected by
1-simplices create voids. In a general setting, a topological feature of dimension j is a
closed chain of j-simplices, which are not the boundary of a chain of ( j+1)-simplices.
The simplicial homology with coefficients in Z/2Z = {0, 1} captures the collection
of j-cycles which are not the boundary of a chain of ( j + 1)-simplices and creates
an equivalence relation between them, the j-th homology group Hj . An associated
invariant to each homology group Hj is the j-th Betti number that denotes the number
of j-dimensional topological features or rank(Hj ).

PH captures the behavior and evolution of homology across the filtration levels,
detecting when a topological feature is created (“birth") and when it disappears or is
merged with a previous one (“death"). The topological information captured via PH
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Fig. 3 A fragment of a simplicial complex filtration is presented with some selected topological features.
Initially, nine connected components inK1 weremerged into one inK2. As the filtration value increases, the
topological features of higher dimensions are born and die at the end. The complete topological information
is then summarized in barcodes and persistence diagrams

can be summarized in persistence intervals. Each persistence interval (birth, death)
determines the lifetime or lifespan of a given topological feature. The collection of
persistence intervals in all dimensions is then represented as a set of sorted intervals
(barcodes) or as a multiset of points in the plane (the persistence diagram) as presented
in Fig. 3. We invite the reader to review (Hatcher 2002; Edelsbrunner and Harer 2010)
for a detailed and formal exposition about PH and Algebraic Topology.

In Fig. 3, we show in a toy filtration, how PH tracks the evolution of topological
information as εi increases from ε1 to ε5. Initially, there are nine connected compo-
nents (H0 in orange) in K1 = f −1([0, ε1]). Next, these components were merged
into a single connected component in K2 = f −1([0, ε2]), as shown encircled in the
Barcodes plot. Equivalently, the eight persistence intervals born in ε1 and died in ε2
are represented with an orange-filled dot in the Persistence Diagram plot. At the same
time, there are two 1-cycles (H1 in gray), illustrating the evolution of H1 along the
filtration. The first 1-cycle was born in ε2, and the second 1-cycle appears when the
first one was broken down into two 1-cycles in ε4.

2.3 Classification problem

Let F be a finite feature space endowed with a proximity function h(·, ·), and P ⊂ F

be a feature subspace. Let L be a label set. Suppose P is divided into two subspaces
P = Xl ∪Xu , Xl the set of labeled points, and Xu is the unlabeled point set, which can
be empty. Thus, the classification problem could be defined as predicting a suitable
label l ∈ L for every x ∈ Xu . Consequently, the predicted label list, Ŷ ⊂ L |Xu |, will
be the collection of labels resulting from the classification method.
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3 Proposed classificationmethod

We are interested in classifying a collection of unlabeled points Xu by considering
the labels on Xl . A common way to achieve this aim is by using the Nearest Neighbor
(NN) rule, which is based on the assumption that elements with the same label should
be close. In the case of the K-Nearest Neighbors (KNN) rule, the label of x ∈ Xu is
calculated as

l = ŷx = arg maxy∈Y
k∑

i=1

I (ypi = y),

where pi is the i-th nearest neighbor of x, Y is the label predictions list, ŷx is the
predicted label for x, and I (ypi = y) is the indicator function and equals 1 when
ypi = y and 0 otherwise. The challenge in KNN is to choose the right value of k: a
low value of k increases the noise sensibility, and a high value of k could include a large
neighborhood making the label l not representative of x. A typical solution to find the
right value of k for each dataset is to perform cross-validation (Jiang andWang 2017).
The KNN rule creates the KNN Graph by considering the point set (0-simplices) as
a vertex set, and an edge (1-simplex) e = (x, v) = (v, x) exists if v is a k-nearest
neighbor of x.

KNN classifier is an instance-based learning method. These methods store the
labeled samples, and generalizations beyond these samples are generated when a
new instance must be classified (Mitchell 1997). In contrast, model-based learning
methods infer a target function with a training set, and generalizations are made based
on the learned function. Our proposed method is a KNN generalization extending
the neighbors from 0-simplices to q-simplices and neighborhoods from k edges to
collections of simplices of variable sizes and dimensions. The main challenge is to
select an optimal simplicial complex that accurately represents our data, considering
that multiple simplicial complexes can be constructed from the same point cloud.

The proposed method is divided into four steps summarized in Fig. 4. The steps
are: to build a filtered simplicial complex (Sect. 3.1), to compute persistence intervals
(Sect. 3.2), to choose a meaningful sub-complex (Sect. 3.3), and to classify unlabeled
points (Sect. 3.4). Design choices are presented in Sect. 3.5, and described in more
details in the Discussion (Sect. 5).

3.1 Step 1: Building the filtered simplicial complex

A filtered simplicial complex K is built on the dataset P = Xl ∪ Xu using a distance
or proximity function h(·, ·) which is problem-specific (e.g., Euclidean, Manhattan,
or Cosine). In our approach, Xu can be empty, and the unlabeled points x ∈ Xu can be
included in the classification stage, leading to the special cases explained in Sect. 3.4.2.
In Fig. 4, Xl are the red, blue, and green points; Xu = {x1, x2} is illustrated by the two
unlabeled black points. K1, K2, K3, and K4 are examples of possible sub-complexes.
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Fig. 4 The proposed algorithm involves several steps. The Step 1 constructs a filtered simplicial complex
K, which may or may not include the unlabeled points. In Step 2, PH is computed to extract persistence
intervals, revealing the hidden topological information within the data. Building upon this, Step 3 utilizes
selection functions based on the recovered topological information to identify a meaningful sub-complex.
Finally, the classification phase begins in Step 4. It involves determining the simplicial neighborhood for
each unlabeled point and calculating the label contributions using a weighted sum approach. The unlabeled
point is then assigned the label that receives the highest number of votes

The proposed method can be applied to several simplicial complexes such as Rips,
Čech,Witness, or Alpha.We choose Rips complexes due to their properties and exten-
sive use in the field. Yet, we use three existing scale-up strategies to apply our proposed
method to real datasets. (i) Limiting simplicial complexes maximal dimension q,
2 ≤ q  |P|. (ii) Limiting maximal edge length E to the average of the distance
between all points in P. (iii) Applying the edge collapse method proposed by Bois-
sonnat and Pritam (2020) to obtain a simplicial complex with fewer simplices than the
original one but maintaining the same PH. The implementation details are available
in Appendix 1.

Recall that to address scalability issues, we can build the complex by using the
selected filtration value in Sect. 3.3 as maximal edge length as explained in Sect. 5.3.2,
and the resultant complex will be the same as the desired sub-complex Ki .

3.2 Step 2: Compute persistence intervals

A filtered simplicial complex K provides numerous multiscale data relationships.
However, focusing on all of them canmake it challenging to extract useful information.
To overcome this, we aim to choose a sub-complex Ki from the filtered simplicial
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complex K to approximate the actual structure of the dataset. In this vein, we exploit
the ability of PH to detect topological features. For a filtered simplicial complex K of
dimension q, PH will reveal up to q-dimensional homology groups Hq . In this paper,
we use public implementations of several algorithms to compute PH through its dual
(Persistent Cohomology), such as the ones proposed by de Silva et al. (2011), and
Dey et al. (2014), which leads to more efficient computations than the classical PH
computation through the reduction matrix algorithm proposed by Edelsbrunner et al.
(2002).

When we build a filtered simplicial complex, an arbitrary level-set function f (·)
will, with a high likelihood, impose a total order on the simplices, giving rise to a non-
decreasing sequence of simplices.A partial ordermay occur asweworkwith quantized
data defined by the proximity function h(·, ·). Thus, quantization should be defined
accordingly. Following the reduction matrix algorithm for computing PH proposed by
Edelsbrunner et al. (2002), we can classify each simplex as “positive” or “negative”. A
positive simplex (a rowof the reducedmatrix) creates a topological featurewhen added
to the filtration.A negative simplex (a column of the reducedmatrix) ends a topological
feature when it is included in the filtration. Thus, a topological feature (j-cycle) can
be identified entirely by the positive and negative simplices α, β ∈ K that create and
end that topological feature. Recall that the negative simplex is optional, meaning the
topological feature never dies. The persistence interval of the cycle is given by the
filtration values of α, β, i.e., ( f (α), f (β)). If there is no related negative simplex up to
the maximal edge length E (essential j-cycle), the corresponding persistence interval
is ( f (α),∞).

Let D j be the set of the persistence intervals of j-cycles along the filtration ofK. We
then collect all persistence intervals as the disjoint union ofmultisets D = ⊔

j>0 D
j =⋃

j>0{(di , j) | di ∈ D j }, with di = (bir thi , deathi ) is the i-th persistence interval of

D j , where multiple copies of a given persistence interval with dimensions higher than
zero are allowed. The 0-dimensional homology group is excluded because we aim to
minimize the number of connected components while looking at homology groups in
higher dimensions. This minimization will always happen if dim(K) > 0. We should
minimize the number of connected components to increase the likelihood that every
unlabeled point x ∈ Xu (that is not an outlier) belongs to a connected component
and can be classified if there are labeled points in that connected component. If x
is an outlier, it will take more effort (and high f (·) values) to connect it with any
connected component. Figure 5 shows an isolated blue point that remains disconnected
in different chosen sub-complexes.

3.3 Step 3: Recover ameaningful sub-complex

In this section, we provide four naive selection functions to address the Sub-complex
Selection problem, and in Sect. 4.3, we present an experimental-based explanation of
how the functions behave in practice. We hope this information can help the reader
decide which function to use for his/her own data classification problem. In addition,
in Sect. 5.4, a discussion is made about other approaches to solving the same problem
to help the reader further to make an informed decision.
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If d ∈ D is a persistence interval, then the lifetime of the topological feature associated
to d is measured by:

lifetime(d) = min{d[death], E} − d[bir th].

Essential persistence intervals (infinite death values) are truncated to the maximum
value E in the collection of filtration values. A desired persistence interval d ∈ D is
selected by using the following (naive) selection functions:

(a) The persistence interval with maximal lifetime:

dmax = MaxInterval(D) = arg maxd∈D(lifetime(d)). (4)

(b) The persistence interval with the closest persistence to the median lifetime:

dmed = MedInterval(D) = arg mind∈D(|lifetime(d) − median(D)|). (5)

where median(D) is computed over the persistence set {lifetime(d)}d∈D .
(c) The persistence interval with the closest persistence to the average lifetime:

davg = AvgInterval(D) = arg mind∈D(|lifetime(d) − average(D)|), (6)

where average(D) = 1
|D| · ∑

di∈D lifetime(di ).
(d) Let D′ = {d | average(D) < lifetime(d) < E} be the collection of persistence

intervals with persistence higher than the average lifetime. We select one of them
uniformly at random:

drandom = RandomInterval(D) = random(D′). (7)

Persistence intervals with significant persistence are commonly considered genuine
topological features, and intervals with brief persistence are considered noise or local
geometric information, depending on the application. For this reason, we propose
the MaxInterval selection function. Selection functions MedInterval and AvgInterval
use central tendency measures on the collection of lifetimes to capture a persistence
interval with an expected lifetime. The preferred function depends on the skewness of
the lifetime distribution. We can take the persistence interval with persistence closest
to the maximum between average(D) and median(D). Finally, the RandomInterval
function is based on the properties of randomized algorithms (Motwani and Raghavan
1995), which distributes the chances of taking a good choice between all possible
intervals with persistence on the interval (average(D), E).

When working with abstract simplicial complexes, the presence and arrangement
of holes (j-cycles) convey both topological and geometrical information. While our
primary focus is on analyzing the topological aspects, there are also hidden geomet-
rical details. For example, during a persistence interval lifespan, certain connections
among simplices may emerge, but they might not necessarily signify an observable
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topological characteristic at a PH level. As a result, a higher filtration value may con-
tain the same topological information as a previous one but with greater or equal
geometrical information. Therefore, in the event of a tie during the computation of
MaxInterval,MedInterval, andAvgInterval, the persistence interval with the later birth
time (the youngest) should be selected in order to increase geometrical differentia-
tion. This choice also has topological implications because we aim to minimize the
number of connected components, which increases the likelihood that an unlabeled
point belongs to a connected component or gets at least a 0-simplex as a neighbor,
thus avoiding an empty link.

For the selected persistence interval d ∈ {dmax , dmed , davg, drandom} we must
obtain a sub-complex Ki from {Kt = f −1([0, εt ])}εt∈[d[bir th],d[death]]. Multiple
approaches exist to select a level value εi ∈ [d[bir th], d[death]] such as maximizing
the area under a topological curve like Betti Curves (Saadat-Yazdi et al. 2021), Euler
characteristic curve (Curry et al. 2018), or Persistence Entropy Summary (Atienza
et al. 2020). We instead apply a straightforward approach, taking the half lifetime of
the chosen interval d[death]−d[bir th]

2 as a measure of required persistence concerning d.
Thus, “relevant” features will be intercepted1 at the birth, middle, and death times of d.
Themiddle time captures those intervals intercepted by the birth time and with enough
lifetime, but also those intervals d ′ such that d[bir th] ≤ d ′[bir th] ≤ d[middle] with
d[middle] = d[bir th]+d[death]

2 . The death time captures those intervals born before
d[death] with enough lifetime to reach d[death]; this will capture some of the persis-
tence intervals captured in themiddle but also new ones. Among these threemilestones
on a persistence interval, we have experimentally tested that taking the sub-complex
Ki on the d[middle] and d[death] filtration levels behaves better than the sub-complex
taken on the d[birth] time. However, taking the sub-complex at the death time works
better than other filtration values on d in the tested datasets, giving similar results to
the previously mentioned approaches, and it is simpler to obtain. Therefore, we set
εi = d[death]− δ, with 0 ≤ δ ≤ 1 to capture a minimal instant before the death of d;
then, we obtain the respective sub-complex Ki = f −1([0, εi ]). Results of exhaustive
experiments across all filtration values are reviewed in Sect. 4.3.

In Fig. 5, a filtered simplicial complexKwas built on the Circles dataset (described
in Table 1, Sect. 4) with noise = 10. We show how PH is applied to perform an
informed selection of a sub-complex Ki ⊆ K by following the procedure explained
in Sects. 3.2 and 3.3. Two persistence intervals (b1, d1) and (b2, d2) were captured by
applying theMaxInterval(·), andRandomInterval(·) selection functions (seeEqs. 4 and
7), respectively. Then, we retrieve two sub-complexesKd1 = f −1([0, d1−δ]),Kd2 =
f −1([0, d2 − δ]) by taking the dead times as we suggest in Sect. 3.3. Note that close
to the death time d1, there are three connected components H0 and three 1-cycles
H1 captured in Kd1 . We observe that d2 > d1, and just before d2, only two of these
three connected components remain, and two 1-cycles were filled; this situation is
seamlessly captured byKd2 . From Fig. 5, we realize that by taking the sub-complexes
from the birth time, the resulting sub-complex Kb1 has only two 1-cycles, but four
connected components andKb2 has three 1-cycles but also four connected components.

1 By intervals intercepted at level value εi , we mean the homology of f −1([0, εi ]), i.e, the j-cycles alive
at time εi . See Fig. 5, how the selected purple and yellow intervals are “intercepting” barcodes.
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Fig. 5 A barcode representation of PH in K is shown, which have two homology groups H0 (connected
components) and H1 (1-cycles). Two persistence intervals (b1, d1) (purple), and (b2, d2) (yellow) were
selected according to the RandomInterval(·) and MaxInterval(·) selection functions, respectively. The sub-
complexes Kd1 = f −1([0, d1 − δ]) and Kd2 = f −1([0, d2 − δ]) are shown. In order for outliers to be
connected, a large filtration value is required, as demonstrated in the example. The chosen sub-complexes
(Kd1 ,Kd2 ) still leave the same blue point isolated

A similar analysis can be made using the middle time, where the sub-complex Km1

will contain the same topological info as Kb1 . However, the sub-complex Km2 will
have missing one 1-cycle by maintaining the same number of connected components
as Kd2 .

3.4 Step 4: Classify

The simplicial neighborhood of a q-simplex σ ∈ K will be recovered by using the
link and star (Definition 2). A key component of the proposed method is the label
propagation over a filtered simplicial complex detailed in this section.

3.4.1 General case

Let us assume thatKi ⊂ K was chosen according to the selection functions presented
in Sect. 3.3. Let A be the real vector space with generators l̂1, l̂2, . . . , l̂N , where L =
{l1, l2, . . . , lN } is the set of labels. We consider 0 ∈ A to represent no value. The
generator l̂ j will be associated to the label l j according to Definition 5.

Definition 5 (Association function) Let �i : Ki → A be the association function
defined on a 0-simplex v ∈ Ki as �i (v) = l̂ j if v ∈ Xl and l j is the label of v and
�i (v) = 0 in any other case. The association function can be extended to a q-simplex
σ ∈ Ki by setting �i (σ ) = ∑

v∈σ �i (v).
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Note that the simplicial neighborhood of x ∈ Xu includes simplices added to the
filtration at different filtration values (distances) and related to simplices of different
dimensions (for instance, in 2D, segments, and triangles). We are interested in assign-
ing weights to quantify the relevance of each simplex belonging to the simplicial
neighborhood of x, considering the vanishing effect of weights conforming filtration
values among x and its neighbors increases. A simple way to define such a decay
function is by adapting the so-called Shepard’s Method (Shepard 1968), also known
as Inverse Distance Weighting (IDW), to simplicial neighborhoods.

In a simplicial complex, we can use the link and star operations to propagate labels
from labeled points in Xl to unlabeled points in Xu . We use a modification of the
conventional IDW, suitable for simplicial neighborhoods. We use the filtration values
as a proximity function among simplex elements. As a result, we define the Inverse
Squared Filtration Value Weighting (ISFVW) to assign the following weight to a
simplex σ regarding x, whenever σ ∪ {x} ∈ Ki (recall that f : K → [0, E] is the
filtration function as in Definition 3):

wx,σ =
(

1
f (σ∪{x})2

)

(∑
μ∈StKi ({x})

1
f (μ)2

) , (8)

We then define the extension function as follows,

Definition 6 (Extension function) Let 	i : X → A be the function defined on a point
x ∈ Xu by

	i (x) =
∑

σ∈LkKi ({x})
wx,σ �i (σ ) =

∑

μ∈StKi ({x})
wx,μ\{x}�i (μ \ {x}). (9)

In Eq. 9, the normalizing factor (i.e., the denominator in Eq. 8) is the same throughout
the whole sum. Hence, the normalization will not affect the ratio between components
of the resulting vector element (a j )

N
j=1. Therefore the normalization (in Eq. 8) can be

avoided, giving rise to the following simplified equation:

	i (x) =
∑

σ∈LkKi ({x})

�i (σ )

f (σ ∪ {x})2 =
∑

μ∈StKi ({x})

�i (μ \ {x})
f (μ)2

. (10)

In Eq. 10 we obtain the cofaces of x such that μ ∈ StKi ({x}), and μ = σ ∪ {x} for
some σ ∈ LkKi ({x}), according to Eq. 3. We then compute an ISFVW to the label
contributions on the simplicial neighborhood of x to prioritize the influence of σ to
label x. Let α, β ∈ StKi ({x}) be two simplices, such that f (α) < f (β). This condition
implies that α was clustered around x earlier than β was since α appears before β in the
filtration. Consequently, α label contributions should be more important than β label
contributions. The classification becomes more aware of the filtration history by using
filtration values as inverse weights. This approach provides various benefits, including
distance encoding operators, implicit local outlier detection, and density estimators.
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Small values are associatedwith dense regions and small-volumeq-simplices,meaning
simplicial elements are more strongly related. High filtration values mean it takes
longer to create the simplex; consequently, the relationship among their elements is
weaker.

According to the previous definitions, given a point x ∈ Xu , the evaluation of the
extension function at x would be 	i (x) = ∑N

j=1 a j · l̂ j , where a j ∈ R+ ∪ {0}, j =
1, . . . , N .

Definition 7 (Labeling function) Let x be a point in Xu such that

	i (x) =
N∑

j=1

a j · l̂ j .

Let ã be the maximum value in (a j )
N
j=1, and Ã = { j | a j = ã} be the set of maximum

value indexes. We define the labeling function ϒi at x as ϒi (x) = lk where k is
uniformly selected at random from Ã. If ã = 0 then ϒi (x) = ∅.

If there is a unique maximum value in the set (a j )
N
j=1 introduced in the previous

definition, the labeling function is uniquely defined at x. In all tested datasets, the label
assignment of each point in Xu was uniquely defined because the factor 1

f (·)2 acts as
a tie-breaker. The classification process is summarized in Algorithm 1.

In Fig. 6, an unlabeled point x1 is being classified. In the simplicial neighborhood
of x1, there is a tie among the blue, red, and green-labeled points. This tie makes it
difficult for the KNN algorithm to assign a label, especially for k values between 2 and
7. Even IDW-based weighted KNN approaches struggle with this problem because of
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Fig. 6 Let Ki ⊆ K be a chosen sub-complex and x1 an unlabeled (black colored) point. The simplicial
neighborhood of x1, StKi

({x1}), and LkKi
({x1}) are shown inside blue circles. Consequently, the exten-

sion function 	i (x1) is illustrated, collecting label contributions. Finally, the labeling function ϒi (x1)
assigns a green label to x1. The inverse level-set function

1
f (·)2 acts as a tie-breaker of green/red/blue label

contributions, even when looking at the simplicial neighborhood of x1 might seem there is a tie between
labels

the dependence on the chosen k value and the distance similarities between the red
and green-labeled points. Our approach solves this issue by using 1

f (·)2 weighting to
classify x1 without concern for the tie among labels in the simplicial neighborhood.
Figure 6 shows that the topology of labeled points entirely determines the labeling
process of an unlabeled point since other unlabeled points do not make any contribu-
tion. Each unlabeled point will find the contribution of labeled points by exploring its
link or through executing the border cases discussed in Sect. 3.4.2.

3.4.2 Special cases

Recall that P ∈ {{Xl ∪ Xu}, {Xl}} is the dataset applied to build the filtered simpli-
cial complex K and Ki = f −1([0, εi ]) is the selected sub-complex. There are three
special cases related to an unlabeled point x, where the labeling function presented in
Definition 7 produces no label contribution (ã = 0):

(i) Isolated point: x ∈ P and {x} a maximal simplex, then LkKi ({x}) = ∅.

(ii) External point: x /∈ P , thus LkKi ({x}) = ∅.
(iii) Unlabeled link: All points in LkKi ({x}) are unlabeled.
Case (i): Isolated point

In the first case, for the chosen εi , x is considered an outlier; therefore, no label should
be assigned to it. See the example of the isolated blue point in Fig. 5, it remains isolated
even for different sub-complexes.

Case (ii): External point

To handle external points, we obtain SnKi ({x}), a simplicial neighborhood of x in
Ki computed with Algorithm 2. Let Ux = {u ∈ K(0) | h(u, x) ≤ 2εi }2 be a (2εi )-
neighborhood of x in Ki , with h(·, ·) the proximity function3 applied to build K. We

2 See Appendix 3 for details about data structures for computing Ux efficiently.
3 See Sect. 5.2 for details.
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consider the selected εi twice, including a εi -radius around x and the εi -radius around
the closest points of x. Then, for each simplex μ ∈ StKi ({u}), u ∈ Ux we obtain a
face μ′ ≤ μ such that μ′ = μ ∩ Ux . Meaning that if x were added to the complex,
then μ′ would belong to the link of x.

As a result, the simplicial neighborhood of x,

SnKi (x) =
⋃

u∈Ux

{μ′ = μ ∩Ux }μ∈StK({u}),

can replace the link (or star) in Eq. 10 given rise:

	(x) =
∑

μ′∈SnKi (x)

�i (μ
′)

f ′(μ′)2
,

where f ′(μ′) ∈ F . Then, ϒi (x) is performed according to Definition 7. Note that
when Ux ⊆ Xu , we reach case(iii).
Case (iii): Unlabeled link
To address the case where all points in LkKi ({x}) are unlabeled, we look for the short-
est paths from x to the labeled points on the connected component containing x. We
address this problem by implementing a modified version of the Dijkstra algorithm
on simplicial complexes, similar to Yershov and LaValle (2011) but using the filtra-
tion values as costs to minimize. This approach can be considered “semi-supervised
learning" by constraining the domain to a neighborhood around the link. Our approach
applies a Min-Heap-based priority queue Q with operations:
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• enqueue(σ, r) : σ is inserted in Q, before every simplex with priority r ′ > r , or at
the end of Q if no priority higher than r is found. The priority r means the cost of
reaching (following a path) σ from x, if σ is not on the same connected component
than x, then r = ∞. A low priority is considered more critical than a higher one.

• dequeue() : Extract a tuple (σ, r) from Q, the first simplex σ with its priority r.
• empty() : Says if Q has 0 element or not.

The first step, is to mark each σ ∈ LkKi (x) as visited and we do Q.enqueue(σ, f (σ ∪
{x})). With f (σ ∪ {x}), we guarantee to process first those simplices that were early
clustered around x on the filtration.We use a flag to avoid enqueueing a simplex twice;
therefore, each element ismarked as visited before being enqueued toQ. For each tuple
(σ, r) ∈ Q, we find LkKi (σ ). Then, we consider each μ ∈ LkKi (σ ), if it was visited,
we ignore it; otherwise, we mark it as visited and check their label contributions with

�i (μ)

(r+ f (μ∪σ))2
. With f (μ ∪ σ), we follow the reasoning of using the filtration values

as weights in Eq. 10 to consider simplices that were early clustered around σ on the
filtration. By using r + f (μ ∪ σ), we reach the minimum cumulative cost of reaching
μ from x. We squared it to maximize the influence of label contributions with minimal
cost over those with high costs to penalize even more simplicial contributors far from
x. If μ has no contribution, we enqueue it with priority r + f (μ ∪ σ) and continue
this process until Q.empty() returns true.
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Consequently, to find the label contributions, we expand the simplicial neighbor-
hood of x by applying the Algorithm 3, obtaining:

	(x) = (a j )
N
j=1 = LpKi (x).

Then, ϒi (x) is performed according to Definition 7. If the entire connected compo-
nent containing x is unlabeled, then LpKi (x) = (0)N , and therefore no label will be
assigned to x.

3.5 Design choices

Assuming the data (the feature space F) is already in tabular form, there are several
decisions the reader/user must make to get the best performance or to apply the pro-
posed method properly. A non-exhaustive list of design choices is now presented. A
more detailed discussion is given in Sect. 5.

3.5.1 Filtered simplicial complex construction (step 1)

To build the filtered simplicial complex of Sect. 3.1 at least four main design choices
must be made: Distance selection, Data transformation, Simplicial complex family
and construction.

Distance selection. Distance choice is a pervasive issue in data analysis; see (Fran-
cois et al. 2007; Aggarwal et al. 2001) to choose distance and transformations for high
dimensional datasets. In Deza and Deza (2013), the authors broadly describe many
distance functions, which is very helpful in understanding which distance is better for
which type of data. When dealing with datasets with missing data, we suggest using
a nan-distance proposed by Dixon (1979). See Sect. 5.2 for a detailed discussion.

Data transformation choice. From a statistical perspective, applying data transfor-
mations, including scaling, normalization, and standardization, is common practice to
enable accurate comparisons among data points. In the present study, we specifically
perform a log transformation on certain datasets, as detailed in Sect. 5.2.

Simplicial complex choice. The Rips complex is the common choice in TDA appli-
cations because it is easy to compute. Still, it grows exponentially on the number of
points and the simplicial complex dimension. Other simplicial complexes may behave
better with large datasets such as Witness complexes (Arafat et al. 2019; Silva and
Carlsson 2004), in Sect. 5.3.2, a detailed exposition can be a guide.

Simplicial complex construction. Filtration values quantization can reduce the topo-
logical noise to the detriment of topological accuracy. Quantization increases the
possibility of having a partial ordering among simplices on the complex; thus, any
decision should consider precaution with the quantization effect. The sequence of
the first three stages (Steps 1, 2, and 3) is not fixed and can be modified to address
scalability issues, as discussed in Sect. 5.3.2.
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3.5.2 Select the sub-complex (Step 3)

To recover the sub-complex Ki ⊆ K, as proposed in Sect. 3.3, two design choices
are made relative to: the persistence interval, and the sub-complex in the persistence
internal.

Persistence interval selection. We propose several selection functions to determine
the sub-complex where the classification is made. The reader should decide which
function to use. We give information about each proposed function and present exper-
imental results showing how it behaves (Sect. 4.3). We consider that the AvgInterval
function is more stable. Others can behave better but are more unstable. Functions
based on Betti curves (Saadat-Yazdi et al. 2021) could work better, but considering
that Betti 0 needs to beminimized (as we explain in Sect. 3.3). Therefore, conventional
functions on Betti numbers must be modified. Section 5.4 discusses this topic.

Sub-complex selection. Once the persistence interval (bir thi , deathi ) is chosen
we need to retrieve a filtration value bir thi ≤ εi ≤ deathi , then Ki = f −1([0, εi ]).
Our paper mainly uses death time as the preferred filtration value. This decision was
made based on performance comparison, as death time surpassed birth and middle
times more frequently than the reverse. Regardless, the reader is encouraged to pick
another one if other arguments arise. It could be the case that the reader thinks about
performing the method on a subset of filtration values creating an ensemble TDABC
and then taking a vote to decide the label to assign, as discussed in Sect. 5.3.2.

3.5.3 Classify (step 4)

In the classification step in Sect. 3.4: how the weights influence of neighbors on
labeling and the voting system were identified also as design choices.

Decay function to weight the influence of neighbors on labeling. Once the sub-
complexKi is chosen, we apply label propagation by using the link and star operators
as simplicial neighborhoods. We should choose a decay function to determine the
relevance of each label contribution. There are many valid functions (Chen 2015), but
we provide one based on the inverse power law using a power value p = 2. The reader
can choose another decay function with other properties; an analysis is presented in
Sect. 5.5.

Voting system. The last decision is determining which label to assign after com-
puting contributions to unlabeled points. Since we use the above-decaying weights
successively in this work, applying a simple majority vote is enough (Lam and Suen
1997). The reader, however, can prefer another voting algorithm. In Sect. 5.5, we
briefly discuss this matter.

4 Experimental results

When applying the different sub-complex selection functions fromSect. 3.3, the results
of our TDA-based classifier (TDABC) may vary. Hence, we derived four variants
of our TDA-based classifier (TDABC), each using a different selection function:
TDABC-RANDOMIZED (RandomInterval), TDABC-MAXIMAL (MaxInterval),
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TDABC-MEDIAN (MedInterval), and TDABC-AVERAGE (AvgInterval). Four base-
line methods were selected to compare the proposed variants: KNN, WKNN, LSVM,
and RF. All baseline classifiers were manually configured to deal with imbalanced
datasets using the known class frequencies, i.e., the “class_weight” parameter in
Scikit-Learn Library (Pedregosa et al. 2012). Table 1 shows the datasets and their
characteristics.

4.1 Artificial datasets

The Circles, Swissroll, Moon, Norm, and Sphere datasets were artificially generated.
In the case of Circles, Moon, and Swissroll, a Gaussian noise factor was added to
diffuse per-class boundaries and to assess classification performance for overlapped
data regions.

The Norm, and Sphere datasets were generated based on a Normal distribution per
dimension. The Norm dataset has a high dimension (P ⊂ R

350, |P| < 350). The
Sphere dataset is always in three dimensions (P ⊂ R

3), aiming to capture entangle-
ment and imbalance sample distributions.

4.2 Real-world datasets

The Iris, Wine and Cancer datasets were selected as real datasets to compare the
proposed classifiers and the baseline ones. The Iris dataset (Dua and Graff 2017)
is a balanced dataset where one class is linearly separable, and the other two are
slightly entangled with each other. The Wine dataset (Dua and Graff 2017) is an
imbalanced dataset with thirteen different measurements to classify three types of
wine. The Breast Cancer dataset (Cancer) (Dua and Graff 2017) is an imbalanced
dataset with thirty features and two classes. The Wine and Cancer datasets were
transformed using a logarithmic statistical transformation. Accordingly, a resulting
dataset was obtained P ′ = {ln (p + M)}p∈P , withM the minimum component value
of the dataset employed to deal with negative numbers. On the other datasets, no
transformation was required.

4.3 Topological information

We assess the behavior of the selection functions by computing TDABC with cross-
validation on each filtration value in the interval [0, E]. Figure 7 shows the plot of the
F1 metric results on the Swissroll and Sphere datasets. Swissroll is a balanced dataset
with a more complex data topology; it has multiple overlapped classes, and Sphere
has multi-imbalanced classes with overlapped classes and a high imbalance ratio.

In Fig. 7a, for the Swissroll dataset, the AvgInterval function selects εi = 6.57 and
gets F1 = 0.80 ± 0.16, with the RandomInterval function the εi = 9.73 and F1 =
0.72±0.16,with theMedInterval functionweobtain εi = 11.41 and F1 = 0.78±0.19,
with the MaxInterval function we obtain εi = 26.03 and F1 = 0.62 ± 0.14.
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Fig. 7 TDABC with Cross Validation (10% fold) was performed on each filtration value in Swissroll and
Sphere datasets. The F1 curve was plotted. Four vertical segments represent the filtration value selected by
each selection function

In Fig. 7b the same process was applied on the Sphere dataset, and using the
AvgInterval function, we obtain εi = 1.07 and F1 = 0.48 ± 0.15, with the
RandomInterval function we obtain εi = 0.75 and F1 = 0.53 ± 0.13, with the
MedInterval functionwe obtain εi = 0.20 and F1 = 0.47±0.09,with theMaxInterval
function we obtain εi = 1.16 and F1 = 0.49 ± 0.15.

In experimental tests, we found that metric curves depending on the filtration val-
ues, as shown in Fig. 7, are pretty different between distinct datasets. Sometimes
there is a clear optimum value, and sometimes is less clear or nonexistent; thus, even
cross-validation does not guarantee the best possible outcome in all datasets. Small
filtration values behave poorly; the high number of connected components may lead to
unlabeled points isolated at the selected filtration value. The most significant filtration
values do not necessarily have the best behavior (an optimum value may exist). In our
experiments, the optimum value never appears equal to the highest possible filtration
value, which is the maximal edge length E. By limiting the maximum edge length, we
also limit the maximal diameter of any topological feature, and therefore we control
the number of elements returned by the link operator. There are stability areas (sets of
consecutive filtration values, which lead to the same results); those areas can be seen
in Fig. 7 as minor, moderate, and significant plateaus. Our naive selection functions
reach a plateau frequently close to the optimum. We consider that these plateaus are
produced because of the TDABC method concerning the local neighborhood around
each unlabeled point. If this neighborhood does not change, the results remain the
same, even when other regions of the complex are changing for different filtration
values. Since points are fixed, at least that new edges or high dimensional simplices
are created, the simplicial neighborhood will not change significantly. In Appendix 5,
we present more topological information on the selected intervals in Swissroll and
Sphere datasets.

123



R. Kindelan et al.

4.4 Evaluationmethodology

We compute the following metrics: F1 = 2 · Precision·Recall
Precision+Recall , the harmonic mean

between Precision
(

T P
T P+FP

)
and Recall

(
T P

T P+FN

)
, where TP are the true posi-

tives, TN true negatives, FP the false positives and FN the false negatives. The Area
Under the Curve (AUC) of the Receiver Operating Characteristic (ROC-AUC) and
the Area Under the Precision-Recall Curve (PR-AUC). The True Negative Ratio or

Specificity
(
T N R = T N

T N+FP

)
, False PositiveRatio

(
FPR = FP

T P+FP

)
, and theGeo-

metric Mean (GMEAN = √
T N R · Recall) between precision and recall. In each

metric, we apply a one-vs-rest approach and macro average. A high value of a metric
is better than a lower one, except in FPR, where a lower value is preferred. For an
extensive exposition of classification metrics, please see (Japkowicz and Shah 2011).

We follow the experimental setting presented in Kubat et al. (1997) to assess the
classifiers’ behavior under imbalanced data conditions. Using the Normal distribution,
we created 16 sets of data with two classes in R

2. The positive class (label 0) was
generated with μ = 0 and σ = 1.1, while the negative class (label 1) was generated
with μ = 2.0 and σ = 2.2. Each dataset contains 100 samples, with 50 in each
class. We then increased the negative class by 50 samples in each successive dataset,
resulting in 16 datasets with varying levels of imbalance, ranging from 1 : 1 to 16 : 1.
We perform repeated cross-validation in each dataset, computing the F1, PR-AUC,
ROC-AUC, TNR, FPR, and GMEAN metric averages and their standard deviation
(vertical segments). Figure 8, shows the experimental setting results per classifier on
the generated datasets.

We conduct another set of experiments across the artificial and real datasets men-
tioned in Sects. 4.1 and 4.2 to evaluate the classifiers’ performance on the selected
metrics using a Repeated R-Fold Cross-Validation process (10% fold, N=5). We
present the results according to the balancing condition of the datasets: imbalanced
dataset results in Table 2 and balanced dataset results in Table 3. Figure 9 shows the
results. We report the metric results on the imbalanced datasets on the minority class.

5 Discussion

This sectionwill delve into our results and design choiceswhen implementingTDABC
in practical situations.

5.1 Result analysis

In Fig. 9, we have presented the results of all metrics across imbalanced and balanced
datasets. Overall, we observe that TDABC is as good as baseline methods, but in the
most imbalanced or entangled datasets, TDABC surpasses the others. This advantage
becomes evident in Sphere, where the imbalance ratio is up to 41:1 considering the
maximal and minority classes (500:12). In a dataset with lower imbalanced ratios like
Cancer and Wine, the same pattern arises with the TDABC providing similar results
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Fig. 8 Classifier’s behavior under imbalanced data conditions. Results of the F1, ROC-AUC, PR-ROC, TNR,
FPR, and GMEAN metrics in the minority class. From the 16 generated dataset with different imbalance
ratios

as baseline classifiers. Table 2 shows detailed results for F1, PR-AUC, and ROC-
AUC to confirm that TDABC behaves better in classifying minority classes when a
high imbalanced ratio appears. The behavior under highly imbalanced data can be
seen in Fig. 8, where we present results under 16 different imbalanced conditions.
Again, we see that in F1, ROC-AUC, PR-AUC, TNR, and GMEAN metrics, the
TDABC methods are similar to baseline approaches from 1:1 (50:50) to 7:1 (350:50)
imbalanced ratios, respectively. From 7:1 to 16:1 (800:50), TDABC becomes better
than baseline methods.

In FPR plots in Fig. 8, we show that the behavior in the minority class is better from
350:50 upwards, whichmeans that baselinemethodswrongly classifyminority classes
more often than TDABC does. Interestingly, the standard deviation in our proposed
methods is more stable than the baseline ones.

Experiments on balanced datasets (see Table 3) show that the proposed TDABC
methods behave competitively concerning baseline classifiers (better than the average),
even with broadly used classifiers such as SVM and RF. Specifically, when topology
becomes complex, like in the Swissroll case, where no hyperplane correctly identifies
classes, TDABC shows better F1, ROC-AUC, PR-AUC, TNR, FPR, and GMEAN
metrics than all reference methods. Type 1 errors or FPR is lower in our TDABC than
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Table 3 Results per classifier across balanced datasets

Classifiers Circles Moon Swissroll Iris

Global Std Global Std Global Std Global Std

F1

TDABC-AVERAGE 0.580 0.194 0.480 0.081 0.707 0.127 0.932 0.074

TDABC-MAXIMAL 0.599 0.207 0.505 0.085 0.713 0.088 0.922 0.081

TDABC-MEDIAN 0.599 0.207 0.500 0.092 0.805 0.080 0.951 0.079

TDABC-RANDOMIZED 0.580 0.203 0.460 0.089 0.794 0.097 0.941 0.081

KNN 0.360 0.159 0.464 0.099 0.583 0.158 0.961 0.062

WKNN 0.498 0.220 0.450 0.095 0.708 0.086 0.951 0.079

LSVM 0.474 0.196 0.452 0.100 0.660 0.113 0.937 0.066

RF 0.584 0.170 0.484 0.118 0.711 0.104 0.930 0.075

AVERAGE 0.534 0.194 0.474 0.095 0.710 0.107 0.940 0.075

ROC-AUC

TDABC-AVERAGE 0.580 – 0.480 – 0.983 – 0.988 –

TDABC-MAXIMAL 0.600 - 0.505 - 0.994 - 0.987 –

TDABC-MEDIAN 0.600 – 0.500 – 0.980 – 0.983 –

TDABC-RANDOMIZED 0.580 – 0.460 – 0.979 – 0.985 -

KNN 0.360 – 0.465 – 0.992 – 0.997 –

WKNN 0.500 – 0.450 – 0.997 – 0.998 –

LSVM 0.476 – 0.454 – 0.991 – 0.993 –

RF 0.584 – 0.484 – 0.992 – 0.994 –

AVERAGE 0.535 – 0.475 – 0.988 – 0.991 –

PR-AUC

TDABC-AVERAGE 0.547 – 0.490 – 0.976 – 0.974 –

TDABC-MAXIMAL 0.561 - 0.503 – 0.968 - 0.973 –

TDABC-MEDIAN 0.561 – 0.500 – 0.983 - 0.964 –

TDABC-RANDOMIZED 0.547 – 0.482 – 0.975 – 0.971 –

KNN 0.450 – 0.484 – 0.946 – 0.994 –

WKNN 0.500 – 0.478 – 0.979 – 0.997 –

LSVM 0.489 – 0.479 – 0.959 – 0.990 –

RF 0.549 – 0.492 – 0.964 – 0.992 –

AVERAGE 0.525 – 0.488 – 0.969 – 0.982 –

In bold, those classifiers that were superior to the arithmetic mean

the other classifiers in all databases except in the Sphere dataset, where the TDABC-
MEDIAN behaves better than KNN and WKNN but worse than SVM and RF, as
shown in Fig. 9.

We also applied GMEAN tomeasure the combined growth of TNR and Recall. Our
method shows in Fig. 9 higher values of GMEAN on datasets with a high imbalanced
ratio like Norm and Sphere and in balanced datasets with non-linearly separable
classes like Circles and Moon. In general, in each dataset, our method surpasses
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Fig. 9 Results of the F1, ROC-AUC, PR-ROC, TNR, FPR, and GMEANmetrics across datasets. In the case
of imbalanced datasets, the results of minority classes were shown since it is commonly considered the
more important class

at least one of the baseline methods in GMEAN. The TNR measurement results in
Fig. 9 also show that our TDABC behaves well because our method differentiated
negative instances similarly to RF and SVM and better than KNN andWKNN. Again,
our method overcame the others in balanced datasets with overlapped classes, except
for SVM in Circles. However, our method was better in Moon, which has more
entanglement between classes and more elements.

The Circles and Moon datasets are balanced and have very entangled classes due
to the noise factor, making the classification more challenging. In these datasets, KNN
(F1 = 0.449 and F1 = 0.445) and WKNN (F1 = 0.480 and F1 = 0.463) behave
poorly (lower than average). This behavior is related to the fixed value of k and the
assumption that each data point is equally relevant. Even though WKNN imposes a
local data point weight based on distances, it is not enough with highly entangled
classes, as our results show. The TDABC methods can deal with the entanglement
challenge through a disambiguation factor based on filtration values ( f (·)). The Iris
dataset is a simple case where practically all methods perform well.
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5.2 Distance choice

In Sect. 3.1, we have presented approaches based on a Rips filtration, but our method-
ology can be applied to other filtrations with minimal or no changes. Since we are
considering distance-based simplicial complexes, a significant concern is the choice
of the distance or proximity functions. It is a recurrent issue in data analysis, and the
right choice depends on the data nature. Euclidean distance is the most commonly
used distance; however, it becomes biased by the higher dimension components and
is not recommended in high dimensional data (Aggarwal et al. 2001; Francois et al.
2007). It is advised to apply data transformations such as the standard or logarith-
mic transformations as we do with Cancer and Wine datasets. Those datasets have
multiple measures with different meanings and scales; weighted Euclidean distances
such asMahalanobis distance are also appropriated in those cases. Cosine similarity is
easier to compute and more suited for highly dimensional datasets than the Euclidean
distance. The Minkowski distance is a generalization of Euclidean and Manhattan
distances, and the power value p can be adapted to different situations. In Aggarwal
et al. (2001), it was proved that distances with higher values of p behave poorly in
high-dimensional settings. On the contrary, the Manhattan distance behaves better
than Euclidean distance in almost every situation, and distances with power value
0 < p < 1 were the most suited for high dimensional datasets (Aggarwal et al. 2001;
Francois et al. 2007).

When working with nominal data types, it is recommended to leverage distance
measures such as the Hamming Distance, Jaccard Index, and Sorensen-Dice to facil-
itate analysis and computations. When the dataset is incomplete (having missing
values), a common choice is to use the so-called nan-Euclidean distance, proposed
by Dixon (1979), which is a weighted Euclidean distance where the weight miti-
gates the impact of missing components. In some situations, data are conformed with
mixed-type attributes (numerical and nominal data). In those cases, we need to build
an ensemble distance. See (Bishnoi and Hooda 2020) for a survey of different mixed
distances. The better results were obtainedwith the Heterogeneous Euclidean-Overlap
Metric (HEOM) proposed inWilson andMartinez (1997), which is a component-wise
distance that combines specific distances for each component data type.

This paper uses the Euclidean distance to build the complex, but it is a problem-
specific decision. For a detailed exposition of distances and to make an informed
choice, we suggest reviewing (Deza and Deza 2013).

5.3 Filtration choice

To choose the proper filtration, we must consider which problem we want to solve
besides choosing the suitable distance function. The choice is mainly motivated by
our computational resources and the size and quality of our data.
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5.3.1 Noise and outlier treatment

For example, we can tolerate noise and outliers (perform robust TDA) by using one of
the filtrations’ distances to measure (DTM) families. The Distance ToMeasure family
(DTM) of filtrations proposed by Anai et al. (2020) provides a framework for TDA
building filtrations robust over noise and outliers. However, DTM filtration introduces
hyperparameters m and p that can impact the classification in the TDABC setting; we
need to explore these implications further. Since different values ofm highlight various
dataset areas, we must explore how to take advantage of this to pay more attention to
overlapped areas. We perform experiments on Circles and Norm datasets. In Circles,
the behavior was better than the reported results, but in Norm, it was worst. Modifying
p tends to simplify the persistence diagram. The properties of DTM to exclude noise
from topological features can provide a robust approach to applying TDABCon highly
noisy data, such as other weighted PH approaches (Ren et al. 2021).

5.3.2 Scalability

Our TDABCmethod is limited by scalability challenges in constructing the simplicial
complex and topological challenges to apply PH to recover the desired sub-complex
successfully. Gudhi (Maria et al. 2014) has the main advantage of having an explicit
filtered simplicial complex to perform our classification stage by finding appropri-
ate simplicial neighborhoods. However, having an explicit complex has a scalability
disadvantage and memory constraints. To reduce the impact of those issues, we can
interchange the step sequence from Step 1→ Step 2→ Step 3 to be Step 2→ Step 3
→ Step 1. Meaning that we should compute PH directly with other frameworks such
as Giotto (Pérez et al. 2021), and Ripser (Bauer 2021; Zhang et al. 2020) that do
not build the simplicial complex explicitly. Then we suggest choosing an appropriate
filtration value according to Sect. 3.3 and building the simplicial complex with Gudhi
by fixing the chosen filtration value as the maximal edge length. As a result, we obtain
a filtered simplicial complex that is the same as the sub-complex we would obtain by
following the original step sequence presented in Fig. 4. The classification stage of
Sect. 3.4 is always the last one.

Changing the complex Certain simplicial complexes, such as the Witness complex,
are more suitable for effectively handling large amounts of data. We suggest using
a Witness Complex developed according to the methodology of Arafat et al. (2019)
through ε-covers, while following the advice of Silva and Carlsson (2004) in selecting
landmark points. Careful selection of landmark points is essential, and we recommend
prioritizing labeled points when selecting landmarks at random. Using the maxmin
approach of Silva and Carlsson (2004), we can include labeled and unlabeled points
since the approach ensures uniform distribution of landmark points. Doing this guaran-
tees that witness points will be among labeled and unlabeled points, thus maintaining
the classification error bounded by the witness complex’s topological estimation error
and ensuring convergence of Algorithms 2 and 3.

Another approach is to build non-flag simplicial complexes based on m-
dissimilarities and m-metrics (it compares m+1 points simultaneously instead of only
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two as typical distances do) as proposed in Wagner and Dłotko (2014), to produce
simplicial complexes with a lower number of simplices at expenses of more compu-
tational time. Nevertheless, by finding appropriate permutations of the point set by
using space-filling curves (Z-order, Hilbert-order), we can build the complex faster,
see Sects. 3, and 4. These constructions can be done using Gudhi’s implementation
of skeleton blockers (Attali et al. 2011), which prevents some simplices from being
expanded to higher dimensions if a criterion is not reached.

Localized TDABC (LTDABC)
The TDABC proposed method is affected the exponential growth of filtered simpli-

cial complexes. However, those methods classify each unlabeled point in a localized
region of the selected simplicial complex, and therefore it is not strictly necessary
to build the whole filtered simplicial complex. Following this intuition, it is straight-
forward to develop a localized approach to TDABC, which we call the Localized
TDABC.

The main idea is to infer a localized region from the original filtered simplicial
complex, to perform the conventional TDABC. This region is associated with each
unlabeled point x, and in normal circumstances, it is limited by Nx = LkK(x)(0), the
vertex set of LkK(x). Nevertheless, in the case of Nx ⊆ Xu , we cannot get any label
contribution to classify x. A propagation schema will be necessary until a suitable
label is reached, as explained in Sect. 3.4.2. Accordingly, we need to be sure that
Nx = LkK(x)(0) ∪ L(0), with L is the collection of visiting simplices during the
propagation stage. We need to infer this information from the dataset because we do
not yet have any filtered simplicial complex. We recommend collecting Nx with the⌈√|P|⌉-nearest neighbors of x. In this way, the localized region Nx always exists and
becomes scalable. Once we have the localized region Nx , we perform the standard
TDABC process presented in Fig. 4 by constructing the filtered simplicial complex
considering Nx instead of P on the Sect. 3.1.

Ensemble TDABC
We can employ ensemble learning techniques (Dietterich 2000; Fernández et al.

2018) in combination with our TDABC algorithm to address scalability concerns. By
creating partial datasets through subsampling with replacement of samples or features,
we effectively reduce the complexity of the original dataset. For each sub-dataset, we
apply TDABC using one or a mixture of selection functions. Subsequently, a voting
scheme is utilized to aggregate the results of each TDABC instance, enabling us
to determine the final label assignment. This ensemble approach not only enhances
scalability by reducing the computational burden but also maintains the effectiveness
and accuracy of the classification framework.

5.4 Sub-complex selection

The Sub-complex selection is one of the most challenging problems in this paper. The
reader can solve this by considering the sub-complex to choose as a hyper-parameter
to optimize by using Cross-Validation based approaches (Jiang and Wang 2017); this
approach always reaches an optimal sub-complex but is impractical. Our TDABC is
designed in such a manner that the sub-complex Ki ⊆ K need to be chosen once or

123



A topological data analysis based classifier

a minimal number of times, e.g., when too many new points need to be added to the
dataset. Even in these cases, this approach is computationally expensive.

5.4.1 Model selection

In Caillerie and Michel (2011), the Sub-complex selection problem is addressed as
a model selection problem in the context of density estimation. A slope heuristic
combined with a least-squared penalized criterion is proposed to choose a “convenient
scale” atwhich the topological featureswill be studied.However, themethod is defined
for simplicial complexes where all its simplices are k-simplices or a face of a k-
simplex (all maximal simplices are k-simplices). The Caillerie and Michel (2011)
approach applies (in theory) to general simplicial complexes, but the penalty function
can be highly complex to devise. The complexities of Caillerie and Michel (2011)
methodology to general complexes (inferring actual density distribution and obtaining
a penalization function) can be boiled down by applying PH, and utilizing statistics
on the persistence intervals’ lifespan.

5.4.2 Optimal stopping

The Sub-complex selection problem can also be considered a variant of the classi-
cal Secretary problem (Freeman 1983), where its classical solution applies to select
the appropriate persistence interval (close to optimal). One potential issue with this
selection method is that it can be costly regarding computing power; the classifier’s
effectiveness must be evaluated beforehand for the first N

e intervals, where N is the
total number of intervals and e is the Euler number. Some extensions of the Secretary
problem may not be suitable for selecting a persistence interval due to assumptions
about data distribution. The Hiring Problem using LakeWobegon approaches (Broder
et al. 2010), for example, assumes a uniform distribution in evaluating candidates and
still requires premature evaluation of the classifier’s performance, making it unsuitable
for our purposes.

5.4.3 Proposed approach

In this paper, we propose a naive approachwith several selection functions that achieve
competitive classification results.We use PH in Sect. 3.2 to gain knowledge about data
topology and perform an informed selection of a sub-complex in Sect. 3.3.We propose
four naive selection functions MaxInterval (Eq. 4), MedInterval (Eq. 5), AvgInterval
(Eq. 6), and RandomInterval (Eq. 7). The classical solution to the Secretary problem
has similarities to our proposedmethod in the sense that avoiding the first N

e candidates
resembles our decision to exclude 0-dimensional homology groups, where we only
consider filtration values such that ε ≥ ê0 with ê0 = min{d[bir th]}d∈D the first
filtration value on the persistence intervals of homology groups of dimension higher
than zero. In both scenarios, N

e > ê0 or N
e ≤ ê0, our method will provide a filtration

value ε higher than ê0 except in the caseswhere all persistence intervals have equal birth
(everyone is the youngest) and same lifespan that is rarely seen in real-life data. The
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Lake Wobegon hiring approach over the mean and median is similar to our proposed
selection functionsAvgInterval,MedInterval. Letdm be the chosenpersistence interval
with dm = arg mind∈D{|lifetime(d)−m|},m ∈ {average(D),median(D)}, whenever
the inequality |lifetime(dm) − m| > dm[bir th] holds, the selected filtration value
dm[death] will be over m the central tendency measure of lifespans. We can force
the condition to be strictly greater than m instead of taking the minimal distance to
guarantee that every time we take a persistence interval in which lifespan is over m,
the classifiers can behave better. Still, we leave these experiments for future work.
Consequently, it can be considered an approximated Lake Wobegon strategy. Our
approach is less exact due to the avoidance of considering the evaluation of each
sub-complex to determine the best, and it is also faster for the same reason.

In Sect. 4.3, we show how the selection functions behave by considering the whole
filtration numbers. There are stability regions, and the proposed naive functions can
identify them. Besides, we can see in these results that it is possible to obtain better
results for TDABC than provided in the Sect. 4 by proposing more sophisticated
selection functions or approaches. More research needs to be done to find theoretical
guarantees. In future work, we will explore other selection functions based on Betti
numbers, topological curves, and signatures; we are also interested in mixing model
selection techniques described in Baudry et al. (2012) and PH to address the Sub-
complex selection problem.

5.5 Classification stage

We propose a simple majority vote to assign a reliable label (see Definition 7) to
an unlabeled point. The decision rests on our proposed ISFVW, which applies the
filtration value as an inverse squared weighting to decide which contributions are more
influential than others. The inverseweighted function should belong, in fact, to a family
of decay functions following, for instance, negative-exponential (exp(−p f (x))) or
inverse power ( f (x)−p) laws. We choose an inverse power law function, as negative-
exponential functions vanish faster. This decision is also supported by the analysis
made by Chen (2015), concluding that spatial models based on power-law decay are
more suitable than negative exponential for analyzing large, complex, and scale-free
models in spatial analysis. The exponent p in inverse power law changes the ratio
between long-range and short-range weights. If a point is adjacent to a data point, its
value is added to the value of that data point. When p is high, the result is similar to
a Voronoi plot where the sites are the known values. When p comes down, the result
looks like a bed on a stick (known value). Usually, p = 2, although other p values
higher than 2 could also work seamlessly depending on the dataset.

When all label contributions are collected, a simple choice is made, and the label
with a majority vote is taken. In Lam and Suen (1997), the effectiveness of several vot-
ing schemas was investigated, and the majority voting system was by far the simplest.
It was found to be as equal and efficient as more complicated schemas.

Since our ISFVWperforms aweighted sumof contributions, it could also be applied
for regression problems, yet we need to normalize the weights in this case. The result
of Eq. 10 is an element x of a vector space; by performing the L1 normalization V

‖V ‖1 ,
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we obtain the probability vector where each component i has the probability of the
unlabeled point x get labeled with li . We can identify and correct mislabeled points in
future work by applying this approach to labeled points.

6 Conclusion

This paper introduces a newTDA-based classifier (TDABC) for classifyingmulti-class
datasets with imbalanced and overlapped classes. It uses data topology to identify the
simplicial neighborhood of an unlabeled point and calculates a weighted sum based
on inverse squared filtration values to determine label relevance. Our method can clas-
sify multi-class data without needing multiple binary classification problems. Unlike
the common usage of TDA as a topological descriptor provider for ML, our pro-
posed classifier is a novel application of TDA for classification tasks without any
additional ML method. We present four methods, TDABC-AVERAGE, TDABC-
MAXIMAL, TDABC-MEDIAN, and TDABC-RANDOMIZED, to address binary
and multi-imbalance data classification problems without any re-sampling prepro-
cessing. Overall, our methods perform better on average than the baseline methods
in overlapped and minority classes. Despite the simplicity of the proposed selection
functions, TDABC behaves well in challenging conditions such as overlapped and
multi-imbalanced classes.

In our work, PH is essential in selecting a sub-complex that approximates
well enough data topology through the MaxInterval, MedInterval, AvgInterval, or
RandomInterval selection functions. Moreover, simplicial neighborhoods provide
dynamic neighborhoods for classification. This work presents an application for the
filtration values as inverse squared weighting to measure each simplex label contri-
bution. These weights have several properties to deal with overlapped classes, such
as distance encoding operators, indirect local outlier factors, and density estimators.
As a result, the labeling function depends on the entire filtration history of the filtered
simplicial complex and is encapsulated within the persistence diagrams at various
dimensions.

Summarizing, the main contributions of this paper are the following:

• A link-based label propagation method for filtered simplicial complexes.
• A labeling function that depends on the whole filtration history encapsulated within
the persistence diagrams at various dimensions.

• The application of PH to perform an informed selection of a sub-complex a from a
filtered simplicial complex.

• The design, implementation, and evaluation of four naive selection functions to take
advantage of the topological information to select a sub-complex from filtration.

• ATDAapproach to solving classification problems that shows advantages for imbal-
anced datasets without further ML stages, which is permutation invariant.

Future work includes applying metric learning techniques for distance choice, explor-
ing theoretical guarantees for sub-complex selection, analyzing the impact of theDTM
filtration hyperparameters in TDABC results, and investigating the TDABC potential
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in exploratory data analysis for feature selection,missing data analysis, andmislabeled
classification.
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Appendix 1: Implementation details

This Section provides some details about implementing our TDA-based classifier
(TDABC). The TDABC was implemented on top of the Gudhi Library (Maria et al.
2014), Giotto Library (Pérez et al. 2021), Ripser (Bauer 2021; Zhang et al. 2020) to
solve the computational topology aspects such as Simplicial Complexes and Persis-
tent Homology (PH). Sci-kit learn (Pedregosa et al. 2012) for the Machine Learning
algorithms such as baseline classifiers and PCA and TSNE dimensionality reduc-
tion methods. Numpy (Harris et al. 2020) for multi-dimensional arrays manipulation.
UMAP-learn for UMAP-based dimensionality reduction (McInnes et al. 2020). HDF5
(The HDF Group 1997-2022) to handle large data in primary and secondary memory.
Matplotlib (Hunter 2007) for visualization purposes. The source code of our proposed
TDABC is available on https://github.com/rolan2kn/TDABC-4-ADAC.The following
sections cover different aspects of the TDABC implementation.

Build simplicial complexes

Maximal edge length

A p-cycle can be born at any time and live unaltered up to the maximum edge length,
in which case the p-cycle will die or be divided into two topological features. By
controlling the maximal edge length, we control the topological feature-length and
the size of the simplicial complex, combinatorial on the number of points and the
simplex dimension. Thus, we recommend using the mean distance of the distance
matrix as the maximal edge length. Consequently, noise points will only affect those
cycles with a diameter twice the mean distance and make the filtration robust.

Edge collapse

Edge collapsing in Gudhi must be performed on the 1-skeleton of the simplicial com-
plex and then expand from 1-skeleton to build all high dimensional simplices up to a
maximal dimension q  |P|. TheAlgorithm 4 computes a simplex tree using the edge
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collapsingmethod (Boissonnat and Pritam 2020). A collapsing coefficient is defined to
be dependent on the maximal dimension q. However, it could be enhanced by repeat-
edly calling the collapse_edges method until the simplex tree no longer changes.
We recommend applying a collapsing factor (obtained experimentally) computed as
a function of the point cloud’s ambient dimension and the simplicial complex’s maxi-
mal dimension. Edge collapse in Gudhi and Giotto supported only flag complexes like
the Vietoris Rips. Our method can be used in any simplicial complex with minimal
variations, but each complex has its intricacies to optimize the consumption of time
and space resources.

Computing link and filtration values

The association function, 	i from Definition 5 depends on the LkK operation. How-
ever, up to now, the Python interface of Gudhi Library (v.3.6.0) (Rouvreau 2022) does
not have an implementation of the simplex link operation. Regardless, it can be derived
from the star and co-face operators according to Definition 2.

In Gudhi, each q-simplex σ ∈ K is stored with its filtration value f (σ ). Thus, the
star(SK, σ ) is a function in SK which returns a 2-tuple set

{(μ, f (μ)) | μ ∈ StK(σ )}.

This data structure makes it easy to recover the filtration values required to implement
Eq. 10, Algorithm 2, and Algorithm 3.

Finding neighborhoods of external points

The Algorithm 2 has a lot of room for optimizations. The search for the closest points
to x can be drastically enhanced by applying computational geometry algorithms and
spatial/metric data structures. As a few examples: a pivot point could be selected from
P and then built as a Vantage Point Tree (VP-tree), Ball tree, or M-tree, among others,
to perform multidimensional indexing of all elements by their distance (or proximity)
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to the pivot (Samet 2006). Other metric space searching data structures like the Spatial
Approximation Tree (a-tree) (Navarro 2002) could be applied by considering the same
complex as support instead a Delaunay triangulation. It could be more efficient than
other space partitioning approaches to solve neighboring queries in datasets with more
than 20 dimensions. These data structures could help to find points likely to share a
simplex with x reducing the computational cost in time complexity to O(|P| log |P|)
in the worst case.

Permutation invariance

Given a proximity function h(·, ·), labeled (Xl ) and unlabeled (Xu) point sets both
subsets of P. Our TDABC is invariant to permutations of Xl and permutations of Xu

building every time the same type of filtered simplicial complex. Let K(MP ) be a
filtered simplicial complex constructed using a distance matrix MP over a point set P.
For any permutation π(P) we obtain a distance matrix Mπ(P) and a filtered simplicial
complexK(Mπ(P)).We know thatMp andMπ(P) are equivalentmatrices because both
have the same number of rows and cols.We can turn one into another by elemental row
and column transpositions since they were constructed with the same h(·, ·) function
over the same point set P. Thence, K(Mπ(P)) and K(MP ) are the same complexes
up to labeling permutations because we can always use a simplicial map that applies
the inverse permutation π−1(P) to each element of π(P) to obtain the corresponding
element in P this is equivalent to perform the column and row transpositions to rename
simplices inK(Mπ(P)) to obtainK(MP ). The case of permutations in unlabeled points
Xu is straightforward since the unlabeled points do not contribute to labeling other
unlabeled points. Therefore, no matter which permutation is applied, TDABC will
label the same point (among permutations) with the same label.

Although the results of theTDABC remain consistent across different permutations,
there is room for improvement in terms of time execution. Certain permutations result
in faster computations compared to others, contributing to the observed difference in
performance. One of the reasons for this discrepancy is the locality property, where
elements with small distances between them are clustered together in the element
collection. In such cases, finding similar elements requires less time as they are located
in close proximity. On the other hand, when similar elements are scattered in arbitrary
positions, their retrieval becomes more time-consuming, leading to the wastage of
computational resources. To address this issue, we propose using space-filling curves
and related data structures (refer to Sect. 3), such as Z-order and Hilbert-order. These
techniques, similar to those employed in Gudhi (Maria et al. 2014), have been shown
to accelerate the construction of complexes and streamline simplicial queries.

Topological information

We complement Sect. 4.3 by presenting more information regarding the selected fil-
tration value on the Swissroll and Sphere Datasets. See Figs. 10, 11 and Table 4.
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Swissroll topological information

See Fig. 10.

Fig. 10 Results of applying the selection function on the Swissroll Dataset: the confusion matrices (first
column), barcodeswith the chosen interval (second column), and the chosen sub-complexKi (third column),
each 0-simplex has a color representing its label, unlabeled points in black
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Sphere topological information

See Fig. 11.

Fig. 11 Results of applying the selection function on the Sphere Dataset: the confusion matrices (first
column), barcodeswith the chosen interval (second column), and the chosen sub-complexKi (third column),
each 0-simplex has a color representing its label, unlabeled points in black

123



A topological data analysis based classifier

Extended results

We also conduct experiments increasing the number of unlabeled points. We perform
TDABC with three different cross-validation configurations by taking the fold size to
be NORMAL (10%), EXTREME (60%), and HYPER EXTREME (90%) as fold size.
We present the results of the F1 metric in Swissroll and Sphere Datasets in Table 4.

Complexity analysis

Weutilize the simplex tree fromGudhi as the chosen data structure in our paper because
of its capability to represent any type of simplicial complex. It is worthmentioning that
Gudhi offers various other data structures, as explained in the paragraph, which are
specifically designed for maximal simplices (simplices without cofaces) (Boissonnat
et al. 2017; Boissonnat and Karthik 2018). However, for our purposes, we focus on
the simplex tree due to its versatility and ability to handle a broad range of complex
types.

The simplex tree data structure was presented by Clement Maria and Jean-Daniel
Boisonnat (Boissonnat and Maria 2014). Let SK be a simplex tree representation
of a simplicial complex K. Let σ be a q-simplex where σ ∈ K. The operations
insert(SK, σ ), and search(SK, σ ) have a time complexity O(|σ | · log|P|) by using
red-black trees to represent sibling nodes (nodes sharing its father node, see Fig. 12).
When using hashing functions to represent sibling nodes, the time complexity is
reduced to O(|σ |). Insertion of a q-simplex σ with all its faces has a complexity
of O(2|σ | · |σ | · log|P|). See (Boissonnat and Maria 2014) for a more detailed expla-
nation.

Let τ = {τ0, τ1, · · · , τ j } be a j-simplex, with τ ∈ K. Compute StK(τ ) in a simplex
treeSK is performedby the operation Locate_cof aces(SK, τ ) (Boissonnat andMaria
2014). To locate all cofaces of τ in SK, it is needed to find all occurrences of τ j in
nodeswhose depth is greater than j, and navigate upwards onSK looking for remaining
elements of τ . Those paths where τ was completely found, will contain the cofaces of
τ . Traversing a path in a simplex tree has a worst-case time complexity of O(q + 1)
with q = dim(K). Lets O(T > j

τ j ) be the time complexity to locate all nodes at a depth
greater than j, which contains τ j . Accordingly, the worst case time complexity of

StK(τ ) is O((q + 1) · T > j
τ j ). In Gudhi, every path from the root to any leaf defines a

maximal simplex.
A few algorithms remain missing from this section like the Algorithm 1 to label

a test point set. This algorithm could be implemented considering the explanations
mentioned above. The computation of PH is done using themethod provided byGudhi.
In Sect. 3.3, we define the selection of persistence interval after obtaining the PH. The
Algorithm 4 builds a simplicial complex with distance matrix and edge collapses.
Computing the distance matrix can be done in time O(d · |P|2) with the brute force
method, but it could be at most O(|P|) in a massive parallelism platform (Ji andWang
2022). The edge collapse method runs in time O(n · nc · k2), with n, nc the number
of edges on the input and output graphs, k is the maximal degree of a vertex.
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Table 4 Results varying the number of unlabeled points

F1 Classifiers Sphere Swissroll

Global Minority
class

Fold
standard
deviation

Global Minority
class

Fold
standard
deviation

Normal fold 10%

TDABC-AVERAGE 0.557 0.146 0.107 0.474 0.364 0.143

TDABC-MAXIMAL 0.528 0.143 0.105 0.479 0.377 0.140

TDABC-MEDIAN 0.502 0.125 0.096 0.414 0.235 0.133

TDABC-RANDOMIZED 0.554 0.147 0.101 0.472 0.364 0.134

KNN 0.372 – 0.047 0.721 0.559 0.171

WKNN 0.468 – 0.064 0.802 0.697 0.155

LSVM 0.494 – 0.090 0.747 0.642 0.053

RF 0.527 0.073 0.096 0.720 0.560 0.114

AVERAGE 0.500 0.079 0.088 0.604 0.475 0.131

Extreme fold 60%

TDABC-AVERAGE 0.452 0.066 0.025 0.465 0.345 0.019

TDABC-MAXIMAL 0.441 0.060 0.006 0.463 0.368 0.021

TDABC-MEDIAN 0.379 0.047 0.034 0.374 0.217 0.033

TDABC-RANDOMIZED 0.472 0.076 0.050 0.468 0.360 0.014

KNN 0.327 – 0.008 0.493 0.172 0.031

WKNN 0.373 – 0.025 0.629 0.447 0.064

LSVM 0.419 – 0.031 0.695 0.567 0.013

RF 0.453 – 0.032 0.646 0.484 0.039

AVERAGE 0.415 0.031 0.026 0.529 0.370 0.029

Hyper extreme 90%

F1

Sphere Swissroll

Classifiers Global Minority
class

Fold
stan-
dard
devia-
tion

Global Minority
class

Fold
standard
deviation

TDABC-AVERAGE 0.305 – 0.013 0.320 0.156 0.028

TDABC-MAXIMAL 0.339 – 0.004 0.314 0.207 0.006

TDABC-MEDIAN 0.257 – 0.010 0.267 0.172 0.005

TDABC-RANDOMIZED 0.329 – 0.031 0.318 0.213 0.026

KNN 0.295 – 0.011 0.155 0.006 0.057

WKNN 0.315 – 0.006 0.287 0.128 0.021

LSVM 0.321 – 0.021 0.370 0.195 0.045

RF 0.391 – 0.016 0.376 0.253 0.046

AVERAGE 0.319 – 0.014 0.301 0.166 0.029
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Fig. 12 Asimplicial complex on ten vertices and its simplex tree. The deepest node represents the tetrahedron
of the complex. Every label position at a given depth is linked in a list, as illustrated in the case of label 5.
Picture and caption were taken from (Boissonnat and Maria 2014)

Algorithm 1 includes computing PH, which has a worst-case time complexity of
O(|K|3), but in practice, it has a time complexity near linear. The selection function
computation is linear on the number of persistence intervals O(|D|). The inverse level-
set function f −1(·) that has a worst-case time complexity of O((q + 1) · log |P|) the
same time required to find a simplex in the simplex tree, since we need to locate the
simplex to ask for its filtration value. Algorithm 2 has a time complexity of O(|P| ·
log |P| · |U | · (q + 1) · T > j

τ j ); it is an output-sensitive algorithm which depends of the
number of points inside the (2ε)-ball and for eachpoint the complexity of the star. There
is much room for optimizations by applying dynamic programming techniques since
multiple star queries on the same dense regions have many non-disjoint solutions.
Algorithm 3 finds label contributions to label an unlabeled point x by building an
implicit minimal spanning tree on the connected component containing LkKi ({x}). By
the time the tree is finished,wehave visitedO(M) nodes performing a link operation per
node, whereM can be, at most, the number of simplices on the connected component.
If the entire complex is connected, M = |K |. Enqueue and dequeue operations on
the priority queue Q have a time complexity of O(logM) in Q. Therefore the time
complexity is O(q · T > j

τ j · M · logM). Each node in this implicit tree has space
complexity O((q + 2) · w) bits, (q + 1) the maximal q-simplex cardinality plus one
because of the priority. Since we have O(M) nodes, the total space complexity is
O((q + 2) · w · M) bits.
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